
EE 4720 Homework 3 Solution Due: 15 October 1999

Problem 1: Consider the following method of implementing precise exceptions in DLX. An
Exception Handler Address (EHA) register holds the address of the exception handler and an
Exception Return Address (ERA) register holds the address of the faulting instruction. A new
instruction (not in book) set.eha 〈rs1〉 places the contents of register 〈rs1〉 in EHA. After an
exception occurs the address of the faulting instruction should be put in ERA and control should
jump to the address stored in EHA. When an rfe (return from exception) instruction is executed
control should jump back to the address stored in ERA.

Each stage has a squash signal that effectively replaces any instruction present with a nop.
(See the illustration below.) Each stage also has an EXC signal which, in the middle of the cycle,
is true if an exception is discovered in that stage. EXC will not be asserted if the stage contains an
already squashed instruction. Registers EHA and ERA will be written with data at their in inputs if
en is asserted using the same master /slave timing as the other registers and latches.

The diagram below shows a DLX implementation with the new squash signals (IF.SQ, etc.),
exception signals (in every stage except WB), and the two new registers. The hardware shown can
implement set.eha but does not implement exceptions or rfe. Add the hardware needed to do
these. In particular:

• After an exception occurs control should jump to the address in EHA.

• Exceptions must be precise and handled in program order.

• rfe must return control to the faulting instruction.

• If the multiplexor in IF needs additional inputs, use the Taken signal to create the new
multiplexor control signal. Taken is asserted only when the ID-stage adder produces the
target address.

• Do not implement instructions that transfer ERA to and from an integer register.

• Assume that exception handlers will never encounter exceptions. (They do in real life, so
the handler would need a way to save registers before any exceptions occur.)

• Do not test or set processor status bits for privileged state.

1



Decode

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NOPNOPNOP

NOP

IF.SQ ID.SQ EX.SQ MEM.SQ

EXC

EXC

EXC

Control

Taken

0

1

EXC

=set.eha

ERA
in

en

out

EHA
in

en

out

2



Based on your design, show a pipeline execution diagram for the code below in which the lw
instruction raises a page fault exception in MEM and ant raises an illegal instruction exception
in ID. Show the execution through the first two lines of the handler. Also show execution of the
return from the handler and the second call of the handler for the ant instruction.

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
lhi r20, hi(HANDLER) IF ID EX MEM WB
or r20, r20, lo(HANDLER) IF ID EX MEM WB
set.eha r20 IF ID EX MEM WB
add r1, r2, r3 IF ID EX MEM WB
lw r4, 0(r5) IF ID EX *MEM*WB
ant r6, r7, r8 IF *ID* EXx
sub r9, r10, r11 IFx
and r12, r13, r15
or r15, r16, r17

HANDLER:
sw 1000(r0), r1 IF ID EX MEM WB
sw 1004(r0), r2 IF ID EX MEM WB
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3



! First lines duplicated
lhi r20, hi(HANDLER)
or r20, r20, lo(HANDLER)
set.eha r20
!Cycle 100 101 102 103 104 105 106 107
add r1, r2, r3
lw r4, 0(r5) IF ID EX MEM WB
ant r6, r7, r8 IF *ID* EXx
sub r9, r10, r11 IFx
and r12, r13, r15
or r15, r16, r17

...
! Return address still in ERA.
lw r1, 1000(r0) IF ID EX MEM WB
rfe IF ID EX MEM WB
LINEX:
add r1, r2, r3 IFx
sub r4, r5, r6
xor r7, r8, r9

4



In all the problems below all register values are available when the code starts executing. The
datapath is fully pipelined so execution of floating point operations can start in the cycle after
results are produced, just as the integer instructions do. Unless they are provided, use the following
latency and initiation intervals: add unit: latency 3, initiation interval 1; multiply unit: latency 5,
initiation interval 1; divide unit: latency 19, initiation interval 20.

Problem 2: Show a pipeline execution diagram for the code below. The branch is not taken.
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
multd f0, f2, f4 IF ID M0 M1x
beqz r1, SKIP IF ID EX ME WB
multd f0, f2, f6 IF ID M0 M1 M2 M3 M4 M5 WB
multd f0, f0, f8 IF ID -------------> M0 M1 M2 M3 M4 M5 WB
add r1, r1, r2 IF -------------> ID EX ME WB

Problem 3: Show a pipeline execution diagram for the code below. The add functional unit has
a latency of 3 and an initiation interval of 2. Hint: This problem tests knowledge of initiation
intervals, use of functional units by different instructions, and usage of registers by single- and
double-precision instructions.
! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
LOOP:
gtd f12, f14 IF ID A1 A1 A2 A2 WB
addd f0, f2, f4 IF ID -> A1 A1 A2 A2 WB
addd f6, f8, f10 IF -> ID -> A1 A1 A2 A2 WB
addf f16, f7, f18 IF -> ID -------> A1 A1 A2 A2 WB

Problem 4: Show a pipeline execution diagram for the code below starting from the first iteration
until the CPI for a large number of iterations can be determined. What is that CPI?

The branch condition is bypassed to the ID stage so the branch does not have to stall for r1.
(See 1998 HW 3.)
!Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LOOP:
subi r1, r1, #1 IF ID EX ME WB IF ID EX ME WB

IF ID EX ME WB
multd f0, f0, f2 IF ID M0 M1 M2 M3 M4 M5 WB

IF ID ----> M0 M1 M2 M3 M4 M5 WB
IF ID ----> M0

bneq r1, LOOP IF ID EX ME WB
IF ----> ID EX ME WB

IF ID EX ME
and r2, r3, r4 IFx IFx IFx

CPI is 6
3

= 0.5.

5


