
EE 4720 Homework 2 Due: t,

where t =

{ 4 October 1999, if 29 September class held;
6 October 1999, if 29 September class cancelled;
8 October 1999, if 29 September and 1 October class cancelled.

Problem 1: Suppose the coding of DLX instructions were changed so the destination appeared
before the source operands, as shown in the codings below:

New Type R:
Opcode

0

0 5

rd

6 10

rs1

11 15

rs2

16 20

func

21 31

New Type I:
Opcode

0 5

rd

6 10

rs1

11 15

Immediate

16 31

Type J: (no change)
Opcode

0 5

Offset

6 31

Show the changes needed to the pipeline below to implement this new ISA. The changes should
only effect the ID and WB stages. If there are differences in the control inputs to multiplexors
or other units, explain what those differences are. Make sure that your design executes store
instructions correctly.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

1



Problem 2: The program below executes on the DLX implementation shown below. The imple-
mentation uses forwarding (bypassing) to avoid some data hazards and stalls to avoid others. All
forwarding paths are shown. (If a needed forwarding path is not there, sorry, you’ll have to stall.)
A value can be read from the register file in the same cycle it is written. The destination field in
the beqz is zero. Instructions are nulled (squashed) in this problem by replacing them with slt
r0,r0,r0. All instructions stall in the ID stage.

! Initially, r1=0x101, r2=0x202, r3=0x303
! MEM[0x103] = 0xfe
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
START: ! START = 0x50
lb r1, 2(r1)
addi r1, r1, #3
or r1, r1, r2
beqz r2, SKIP !(taken)
add r3, r1, r2
sub r0, r0, r0
sub r0, r0, r0
SKIP:
xor r3, r1, r3
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

The table below shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. Cycle zero is the time that lb is in instruction fetch. The first two
columns are completed; fill in the rest of the table. Use a “?” for the value of the “immediate field”
of a type R instruction and for the output of the memory when no memory read is performed.
Show pipeline register values even if they’re not used. Assume that the ALU performs the branch
target computation even though it was already computed in ID. The row labeled “Reg. Chng.”
shows a new register value that is available at the beginning of the cycle. If no register value is
written leave the entry blank.

Hints: See Spring 1999 HW 3 for a similar problem. One feature of the solution would not be
present if lb were replaced by a addi. Another feature may not be present if lb were replaced by
lw.

2



Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54

IF/ID.IR sub lb

Reg. Chng. r0←0 r0←0

ID/EX.IR sub sub

ID/EX.A 0 0

ID/EX.B 0 0

ID/EX.IMM ? ?

EX/MEM.IR sub sub

EX/MEM.ALU 0 0

EX/MEM.B 0 0

MEM/WB.IR sub sub

MEM/WB.ALU 0 0

MEM/WB.MD ? ?

3



Problem 3: Consider the program:
LOOP:
lw r1, 0(r2)
add r3, r1, r3
addi r2, r2, #4
bneq r1, LOOP
or r4, r5, r6

For each implementation below provide a pipeline execution diagram showing execution up to
the third fetch of lw and determine the CPI for a large number of iterations.

Not Bypassed:
sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Bypassed:
sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

Problem 4: Schedule (rearrange) the instructions in the program used in the previous problem
to improve execution speed. (Do not change what the program does!). Show pipeline execution
diagrams and determine CPI for the two implementations.

4



Problem 5: Show the changes needed to implement the predicated instructions presented in class.
(Set 4, page 25, as of this writing.) Describe the instruction format and show any datapath and
control changes to the implementation below.

sign
ext.

IR

Addr
6..10

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

= Type R

11..15

16..20

31

0

= Link CTI

= Type I
ALU

RD RD

= Non-link
CTI

= Load

=Store

RD

00

01

10

11
00

01

10

11

MSB

LSB

(Not Connected)

5


