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Problem 1: Design control logic to generate the control signal for the multiplexor at the lower
input to the ALU. The control logic should be located in the ID stage and should generate a
two-bit integer for the multiplexor. The integer specifies which multiplexor input to use, they are
numbered from zero starting at the top. (Input 0 connects to ID/EX.B, 1 connects to EX/MEM.ALU,
etc.) The logic can use units that test for equality of their two inputs, = , and units that test for

instruction formats, = Type I , = Type R , and = Type J , and can use the usual logic gates.
Base the setting on instruction type, rather than the exact opcode. Show how the control signal is
connected to the multiplexor. (25 pts)
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Problem 2: Consider the code below.
LOOP:

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lw r1, 0(r2) IF ID EX MEM WB IF ID EX

addi r3, r1, #12 IF ID --> EX MEM WB IF ID

sw 4(r2), r3 IF --> ID -----> EX MEM WB IF

add r5, r5, r1 IF -----> ID EX MEM WB

addi r2, r2, #8 IF ID EX MEM WB

slt r6, r2, r7 IF ID EX MEM WB

bneq r6, LOOP IF ID -----> EX MEM WB

xor r8, r9, r10 IF -----> x

(a) Show a pipeline execution diagram for execution up to the second time lw enters instruction
fetch. Use the pipeline from problem 1. As with homework 3, a bypass path is unavailable if it’s
not shown. What is the CPI for a large number of iterations? (10 pts)

The pipeline execution diagram appears above. The CPI is 13
7 = 1.857 CPI.

(b) Unroll the loop so that two iterations of the code above is performed by one iteration of the
unrolled loop. (Assume the number of iterations in the original loop is a multiple of two.) Schedule
the unrolled loop to minimize stalls. (10 pts)

LOOP:
!Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
lw r1, 0(r2) IF ID EX MEM WB IF ID EX MEM
lw r11, 8(r2) IF ID EX MEM WB IF ID EX
addi r3, r1, #12 IF ID EX MEM WB IF ID
addi r13, r11, #12 IF ID EX MEM WB IF
addi r2, r2, #16 IF ID EX MEM WB
slt r6, r2, r7 IF ID EX MEM WB
add r5, r5, r1 IF ID EX MEM WB
add r5, r5, r11 IF ID EX MEM WB
sw -12(r2), r3 IF ID EX MEM WB
sw -4(r2), r13 IF ID EX MEM WB
bneq r6, LOOP IF ID EX MEM WB
xor r8, r9, r10 IF x

(c) What is the CPI of the unrolled and scheduled loop found above? What conclusions about per-
formance improvement can and cannot be made by comparing the CPI of the original and unrolled
loop? What is the performance improvement? (Give a number for performance improvement, don’t
just say “it’s good.”) (10 pts)

The unrolled loop has 11 instructions and only suffers a 1-cycle branch delay, for a CPI of 12
11

= 1.091 CPI.

Though the CPI is lower, this doesn’t tell the whole story because fewer instructions do the same amount of work and so
the performance improvement is more than CPI improvement would suggest.

Performance improvement will be expressed as speedup. The speedup of the unrolled loop will be found using the time
needed to do two iterations of the original loop and dividing it by the iteration time of the unrolled and scheduled loop:
13×2

12 = 2.167. 3



Problem 3: Answer each question below.

(a) Show an example of DLX code that encounters a WAW hazard on the Chapter-3 implementation
of DLX (in which the multiply floating-point functional unit has an initiation interval of 1 and a
latency of 6 and the add floating-point functional unit has an initiation interval of 1 and a latency
of 3) but which does not encounter a WAW hazard on a DLX implementation which is identical
except the FP add latency is 1 and the FP multiply latency is 4. The code should not encounter a
structural hazard on either implementation. (12 pts)

! Code execution on Chapter-3 DLX (unmodified).
! Cycle 0 1 2 3 4 5 6
addf f0, f1, f2 IF ID A0 A1 A2 A3 WB
lf f0, 0(r1) IF ID EX MEM WB

! Code execution on Chapter-3 DLX with fast FP functional units.
! Cycle 0 1 2 3 4 5 6
addf f0, f1, f2 IF ID A0 A1 WB
lf f0, 0(r1) IF ID EX MEM WB

(b) In DLX, why are there separate lh (load half) and lhu (load half unsigned) instructions, a sh
(store half) instruction but no shu (store half unsigned) instruction? (11 pts)

Because the register contents is stored into a location of the right size and so there is no need for sign extension and
therefore no need to distinguish a signed and unsigned value.
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(c) The code below is for a stack architecture. Rewrite the code below in DLX using as few
instructions as possible. Assume that ADDRA is in r10, ADDRB is in r11, ADDRX is in r12, and ADDRY
is in r13. The data at the addresses are double-precision floating-point values. (11 pts)

push ADDRX
push ADDRX
mult
push ADDRA
push ADDRB
add
push ADDRX
mult
push ADDRA
push ADDRB
mult
add
add
pop ADDRY

ld f0, 0(r10) ! A
ld f2, 0(r11) ! B
ld f4, 0(r12) ! X
multd f6, f4, f4
addd f8, f0, f2
multd f8, f8, f4
multd f10, f0, f2
addd f10, f10, f8
addd f10, f10, f6
sw 0(r13), f10

(d) Explain two ways in which precise exceptions can be made optional for floating-point instruc-
tions. That is, the programmer may choose to have precise exceptions where they are needed or
may choose to not have precise exceptions were performance is most important. Explain what the
programmer would have to do for each of the two ways. (11 pts)

Method 1: Provide precise and non-precise versions of floating-point instructions. The programmer uses the appropriate
version.

Method 2: Provide a test instruction that can be used after floating-point instructions for which exceptions must be
precise.
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