
EE 4720 Homework 3 Due: 8 March 1999

In all problems below assume there are no cache misses and that all register values are available at
the beginning of execution.

Problem 1: The pipeline shown below cannot execute the jal or jalr instructions. Identify and
fix the problem. (Hint: Think about a difference between jal and beqz besides the fact that jal is
unconditional.)

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

The problem: The jal and jalr instructions are supposed to save the return address (NPC) in r31 but in the
pipeline above there is no path that NPC can take to the writeback stage. (The path through the ALU could be used if
it wasn’t already being used to compute the target address.)

The solution: provide EX/MEM.NPC and MEM/WB.NPC pipeline latches and connect them so that the return
address can move to the writeback stage without having to go through the ALU. Connect the output of MEM/WB.NPC to
the multiplexor leading to the register file. (MEM/WB.ALU and MEM/WB.MD are already connected to this multiplexor.)

1



Problem 2: The program below executes on the DLX implementation shown below. The com-
ments show the results of some instructions. The implementation uses forwarding (bypassing) to
avoid some data hazards and stalls to avoid others. The forwarding paths are shown. A value can
be read from the register file in the same cycle it is written. The destination field in the bneq is
zero. Instructions are nulled (squashed) in this problem by replacing them with or r0,r0,r0.

! Initially, r1=0x11, r2=0x22, r3=0x33, etc.
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
START: ! START = 0x50
addi r1, r2, #1
add r2, r1, r6
xor r2, r1, r2
bneq r1, START
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

The table below shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. Cycle zero is the time that addi is in instruction fetch. The first two
columns are completed; fill up the rest of the table. Ignore values which are not used and which
depend on the func field of type-R instructions. Values which are not used and don’t depend on the
func field should be shown. Don’t forget the IMM values for bneq. The row labeled “Reg. Chng.”
shows a new register value that is available at the beginning of the cycle. If no register value is
written leave the entry blank.

Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54 0x58 0x5c 0x60 0x50 0x54 0x58 0x5c 0x60 0x50

IF/ID.IR sub addi add xor bneq sub addi add xor bneq sub

Reg. Chng. r0←0x0 r0←0x0 r0←0x0 r0←0x0 r1←0x23 r2←0x89 r2←0xaa x r0←0x0 r1←0xab r2←0x111

ID/EX.IR sub sub addi add xor bneq or addi add xor bneq

ID/EX.A 0x0 0x0 0x22 0x11 0x11 0x23 0x0 0xaa 0x23 0x23 0xab

ID/EX.B 0x0 0x0 0x11 0x66 0x22 0x0 0x0 0x23 0x66 ab 0x0

ID/EX.IMM 0x0 0x0 0x1 ? ? -0x10 0x0 0x1 ? ? 0x14

EX/MEM.IR sub sub sub addi add xor bneq or addi add xor

EX/MEM.ALU 0x0 0x0 0x0 0x23 0x89 0xaa ? 0x0 0xab 0x111 0x1ba

EX/MEM.B 0x0 0x0 0x0 0x11 0x66 0x22 0x0 0x0 0x23 0x66 0xaa

MEM/WB.IR sub sub sub sub addi add xor bneq or addi add

MEM/WB.ALU 0x0 0x0 0x0 0x0 0x23 0x89 0xaa ? 0x0 0xab 0x111

MEM/WB.MD 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

2



Problem 3: The program below executes on the implementation also shown below.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

add r1, r2, r3
and r4, r1, r5
sw 0(r4), r1
lw r1, 8(r4)
xori r5, r1, #1
beqz r5, TARGET
sub r5, r5, r5
...

TARGET:
or r10, r5, r1

The implementation includes only the forwarding paths that are shown in the figure. A new
register value can be read in the same cycle it is written. Show a pipeline execution diagram for
an execution of the code in which the branch is taken.

Solution:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
add r1, r2, r3 IF ID EX MEM WB
and r4, r1, r5 IF ID EX MEM WB
sw 0(r4), r1 IF ID --> EX MEM WB
lw r1, 8(r4) IF --> ID EX MEM WB
xori r5, r1, #1 IF ID --> EX MEM WB
beqz r5, TARGET IF --> ID -----> EX MEM WB
sub r5, r5, r5 IF -----> x
...
TARGET:
or r10, r5, r1 IF ID EX MEM WB

3



Problem 4: Add exactly those forwarding paths (but no others) that are needed in the DLX
implementation used in the problem above so that the code above executes as quickly as possible.
Show a pipeline execution diagram of the code (repeated below) on the modified implementation.

add r1, r2, r3
and r4, r1, r5
sw 0(r4), r1
lw r1, 8(r4)
xori r5, r1, #1
beqz r5, TARGET
sub r5, r5, r5
...

TARGET:
or r10, r5, r1

The execution in the previous problem suffers three stalls, starting at cycles 4, 7, and 9.
Without the stall at cycle 4 there would be no way for the data (the new value of r1) to reach the EX/MEM.B pipeline

latch when sw is at the MEM stage. This can be fixed with a bypass connection from the output of the writeback-stage
multiplexor to a new multiplexor placed at the inputs to the EX/MEM.B pipeline latch.

The stall at cycle 7 cannot be avoided since the data is first available at the end of cycle 7 but would be needed at
the beginning of cycle 7 (if the stall were removed).

The stall at cycle 9 provides time for the new value of r5 to reach WB where it meets beqz at cycle 10. One
or both stall cycles can be eliminated by inserting bypass paths. To eliminate one stall cycle insert a bypass path from
EX/MEM.ALU to the input of the =0 box in ID. To eliminate both stall cycles (while possibly lengthening the critical
path) insert a bypass path from the ALU output (before the EX/MEM pipeline latch) to the =0 box.

The pipeline execution diagram below uses the conservative approach for the =0 bypass, from EX/MEM.ALU:

Cycle: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
add r1, r2, r3 IF ID EX MEM WB
and r4, r1, r5 IF ID EX MEM WB
sw 0(r4), r1 IF ID EX MEM WB
lw r1, 8(r4) IF ID EX MEM WB
xori r5, r1, #1 IF ID --> EX MEM WB
beqz r5, TARGET IF --> ID --> EX MEM WB
sub r5, r5, r5 IF --> x
...
TARGET:
or r10, r5, r1 IF ID EX MEM WB

4



Problem 5: The code below executes on the DLX implementation shown below which also includes
the following floating-point hardware:

• As described in Section 3.7 of the text and in class, there is a four-stage FP add unit, a
seven-stage multiply unit, and a 25-cycle FP divide unit (not used in the code below). The
FP add unit also performs FP comparisons, such as eqf.

• The floating-point branch instructions, bfpt and bfpf, are executed in the ID stage just as
the integer branches, beqz and bneq. The FP condition code register (also not shown) is
updated in the WB cycle but the value to be written is forwarded to the controller at the
beginning of WB.

• All stalls are in the ID stage. Floating-point instructions skip the MEM stage.

• Floating-point values are forwarded from the WB stage to the inputs of the FP execution
units. A value written to a FP register can be read in the same cycle.

(a) Show a pipeline execution diagram for two iterations of the code below in which bfpt is taken
in the first iteration but not taken in the second. (Note: the loop is infinite.)
(b) Determine the CPI of an execution of the code for a large number of iterations in which bfpt
is always taken.
(c) Determine the CPI of an execution of the code for a large number of iterations in which bfpt
is never taken.
(d) Determine the CPI of an execution of the code for a large number of iterations in which bfpt
is taken 50% of the time.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

LOOP:
addi r1, r1, #8
lf f0, 0(r1)
addf f1, f1, f0
eqf f0, f2
bfpt LOOP
multf f1, f1, f3
beqz r0, LOOP
xor r2, r1, r3

5



Solution: (The label for the memory (MEM) stage has been shortened to ME. Three iterations (rather than two) are shown; they are needed to solve part (c).)
LOOP:
Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
addi r1, r1, #8 IF ID EX ME WB IF ID EX ME WB IF ID EX ME WB IF ...
lf f0, 0(r1) IF ID EX ME WB IF ID EX ME WB IF ID EX ME WB
addf f1, f1, f0 IF ID -> A0 A1 A2 A3 WB IF ID -> A0 A1 A2 A3 WB IF ID ----> A0 A1 A2 A3 WB
eqf f0, f2 IF -> ID A0 A1 A2 A3 WB IF -> ID A0 A1 A2 A3 WB IF ----> ID A0 A1 A2 A3 WB
bfpt LOOP IF ID ----------> EX ME WB IF ID ----------> EX ME WB IF ID ----------> EX ME WB ...
multf f1, f1, f3 IF ----------> x IF ----------> ID M0 M1 M2 M3 M4 M5 M6 WB IF ----------> ID M0 M1 ...
beqz r0, LOOP IF ID EX ME WB IF ID EX ...
xor r2, r1, r3 IF x IF x

Part (b): If bfpt is taken the iteration consists of 5 instructions. If the branch is always taken each iteration will execute as the first above, and so there will
be 11 cycles per iteration. The CPI is 11/5 = 2.2 CPI.

Part (c): If bfpt is not taken the iteration consists of 7 instructions. In the second iteration above the branch is not taken and so multf is executed, producing
a new value of f1. That new value is needed in the third iteration, stalling addf an extra cycle (the stall occurs in cycles 28 and 29). The second iteration takes 13
cycles (from cycle 11 to 24) but due to the extra cycle the third iteration takes 14 cycles (from cycle 24 to 38). Because iteration 3 and 4 start the same way (as can
be determined by examining the state of execution [a vertical strip] at cycles 24 and 38) they should take the same number of cycles as should following iterations as
long as the branch is not taken. (Note that iteration 2 at cycle 11 starts differently.) Therefore the CPI is 14/7 = 2 CPI.

Part (d): An iteration where bfpt is taken that follows an iteration where it isn’t would take 12 cycles (such a pair is not shown in the diagram above). An
iteration where bfpt is not taken that follows an iteration where it is would take 13 cycles; for example, the second iteration above. For a large number of iterations
the CPI would be (12 + 13)/(5 + 7) = 2.083 CPI.


