
EE 4720 Homework 3 Due: 8 March 1999

In all problems below assume there are no cache misses and that all register values are available at
the beginning of execution.

Problem 1: The pipeline shown below cannot execute the jal or jalr instructions. Identify and
fix the problem. (Hint: Think about a difference between jal and beqz besides the fact that jal is
unconditional.)

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

NPC Z

1



Problem 2: The program below executes on the DLX implementation shown below. The com-
ments show the results of some instructions. The implementation uses forwarding (bypassing) to
avoid some data hazards and stalls to avoid others. The forwarding paths are shown. A value can
be read from the register file in the same cycle it is written. The destination field in the bneq is
zero. Instructions are nulled (squashed) in this problem by replacing them with or r0,r0,r0.

! Initially, r1=0x11, r2=0x22, r3=0x33, etc.
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
START: ! START = 0x50
addi r1, r2, #1
add r2, r1, r6
xor r2, r1, r2
bneq r1, START
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0
sub r0, r0, r0

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

The table below shows the contents of pipeline registers and changes to architecturally visible
registers r1-r31 over time. Cycle zero is the time that add is in instruction fetch. The first two
columns are completed, filling up the rest of the table. Ignore values which are not used and which
depend on the func field of type-R instructions. Values which are not used and don’t depend on the
func field should be shown. Don’t forget the IMM values for bneq. The row labeled “Reg. Chng.”
shows a new register value that is available at the beginning of the cycle. If no register value is
written leave the entry blank.

Cycle 0 1 2 3 4 5 6 7 8 9 10

PC 0x50 0x54

IF/ID.IR sub addi

Reg. Chng. r0← 0 r0← 0

ID/EX.IR sub sub

ID/EX.A 0 0

ID/EX.B 0 0

ID/EX.IMM 0 0

EX/MEM.IR sub sub

EX/MEM.ALU 0 0

EX/MEM.B 0 0

MEM/WB.IR sub sub

MEM/WB.ALU 0 0

MEM/WB.MD 0 0

2



Problem 3: The program below executes on the implementation also shown below.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

add r1, r2, r3
and r4, r1, r5
sw 0(r4), r1
lw r1, 8(r4)
xori r5, r1, #1
beqz r5, TARGET
sub r5, r5, r5
...

TARGET:
or r10, r5, r1

The implementation includes only the forwarding paths that are shown in the figure. A new
register value can be read in the same cycle it is written. Show a pipeline execution diagram for
an execution of the code in which the branch is taken.

Problem 4: Add exactly those forwarding paths (but no others) that are needed in the DLX
implementation used in the problem above so that the code above executes as quickly as possible.
Show a pipeline execution diagram of the code (repeated below) on the modified implementation.

add r1, r2, r3
and r4, r1, r5
sw 0(r4), r1
lw r1, 8(r4)
xori r5, r1, #1
beqz r5, TARGET
sub r5, r5, r5
...

TARGET:
or r10, r5, r1

3



Problem 5: The code below executes on the DLX implementation shown below which also includes
the following floating-point hardware:

• As described in Section 3.7 of the text and in class, there is a four-stage FP add unit, a
seven-stage multiply unit, and a 25-cycle FP divide unit (not used in the code below). The
FP add unit also performs FP comparisons, such as eqf.

• The floating-point branch instructions, bfpt and bfpf, are executed in the ID stage just as
the integer branches, beqz and bneq. The FP condition code register (also not shown) is
updated in the WB cycle but the value to be written is forwarded to the controller at the
beginning of WB.

• All stalls are in the ID stage. Floating-point instructions skip the MEM stage.

• Floating-point values are forwarded from the WB stage to the inputs of the FP execution
units. A value written to a FP register can be read in the same cycle.

(a) Show a pipeline execution diagram for two iterations of the code below in which bfpt is taken
in the first iteration but not taken in the second. (Note: the loop is infinite.)
(b) Determine the CPI of an execution of the code for a large number of iterations in which bfpt
is always taken.
(c) Determine the CPI of an execution of the code for a large number of iterations in which bfpt
is never taken.
(d) Determine the CPI of an execution of the code for a large number of iterations in which bfpt
is taken 50% of the time.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A
B

IMM

NPC

ALU

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU

MD

LOOP:
addi r1, r1, #8
lf f0, 0(r1)
addf f1, f1, f0
eqf f0, f2
bfpt LOOP
multf f1, f1, f3
beqz r0, LOOP
xor r2, r1, r3

4


