
Name

Computer Architecture

EE 4720

Midterm Examination

17 March 1998, 19:00–21:00 CST

Modified

Preliminary, Partial Solutions

Alias

Problem 1 (42 pts)

Problem 2 (32 pts)

Problem 3 (26 pts)

Exam Total (100 pts)

Good Luck!



Problem 1: The DLX implementation below uses ID-stage address calculation (as illustrated)
and bypassing (which is not illustrated) including the branch condition bypassing developed in
homework 3. The branches do not include delay slots.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A

B

IMM

NPC

ALU
Out

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU
Out

MD

! Initial values: r1=2028, r2=0xf11, r3=5, r4=5004, r5=-1000, LOOP=0x3000, MEM[0xf11]=0x97

LOOP: ! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lb r1, 0(r2) IF ID EX ME WB IF ID EX ME WB

add r2, r2, r3 IF ID EX ME WB IF ID EX ME WB

lw r4, 3(r2) IF ID EX ME WB IF ID EX ME WB

sub r5, r1, r4 IF ID -> EX ME WB IF ID -> EX ME WB

bneq r5, LOOP IF -> ID EX ME WB IF -> ID EX ME WB

addi r2, r2, #1 IF IF

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Show a pipeline execution diagram for two iterations of the code on the DLX implementation.
Don’t forget, bypass paths are present but not shown. The space to the right of the program or a
separate sheet may be used. A description of some mnemonics appears on the next page. (7 pts)

(b) On the figure above show exactly those bypass paths needed to execute the code. (7 pts)

(c) What is the CPI while executing the loop (assuming a large number of iterations)? (7 pts) 7/5 = 1.4 CPI.

(d) Show the contents (values, not functions of register names) of the pipeline latches at the middle
of the first cycle that lb is in WB. Include PC and NPC. For IR contents, just show the mnemonic;
if an IR contains a nulled instruction show the original mnemonic and “(nulled).” Show the values
on the diagram above, write the value within the stage to which it applies with an arrow pointing
to the latch or register. (7 pts)

2



(e) Show a pipeline execution diagram of two iterations of the loop below on the DLX implemen-
tation illustrated (it’s the same as the earlier one). As before, bypass paths are provided but not
shown, including hw3 bypass paths. The target of the beqz r2, SKIP2 instruction is really just
the next instruction. Assume that no special hardware optimizations have been made. (7 pts)

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A

B

IMM

NPC

ALU
Out

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

Addr

In

Mem

Out
B

ALU
Out

MD

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

addi r1,r0,#0x200 IF ID EX ME WB

SKIP1:

andi r2, r1, #1 IF ID EX ME WB IF ID EX ME WB IF

beqz r2,SKIP2 IF ID EX ME WB IF ID EX ME WB

SKIP2:

subi r1, r1, #1 IF IF ID EX ME WB IF ID EX ME WB

bneq r1,SKIP1 IF ID EX ME WB IF ID EX ME WB

xor r1, r1, r1 IF

! Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(f) Compute the CPI of the execution
of the loop above for a large number of
iterations. (7 pts)

Note that first branch executes every other itera-
tion, so CPI should be based on two consecutive
iterations. 11

8
= 1.375 CPI.

For Reference:

Mnemonic Description
addi Add immediate
andi Logical “and” immediate
beqz r1, TARGET Branch if r1 equals zero.
bneq r1, TARGET Branch if r1 not zero.
lbu Load byte unsigned.
lb Load byte.
lw Load word.

3



Problem 2: Consider an ISA, DLXPC, which is like DLX except it uses a condition code bit
and predicated execution. The condition code bit is set by the execution of new integer arithmetic
instructions, to zero if the result is zero and to one if the result is nonzero. The ISA also includes
predicated arithmetic instructions which complete only if the condition code bit (set by the most
recent condition-code setting instruction) is 1, otherwise they have no effect. The mnemonic for a
predicated instruction has a “p” appended, e.g., add p, and the mnemonic for an instruction that
sets the condition code has a “c” appended, e.g., add c. An instruction can be both predicated and
set the condition code; for example, add pc only executes if the condition code (set by a previous
instruction) is 1, and sets the condition code itself.

(a) Using these instructions rewrite the code below so that it uses fewer instructions and registers.
Assume that the value in register r1 is not used after beqz.(6 pts)

sub r1, r2, r3
beqz r1, SKIP
add r4, r5, r6

SKIP:
addi r4, r4, #1

Solution below:

sub_c r0, r2, r3
add_p r4, r5, r6
addi r4, r4, \#1

4



(b) The pipeline below implements DLXPC—almost: it will not execute predicated, condition-code
setting instructions (such as xor pc) correctly if an exception occurs at a certain time. Show code
and a pipeline execution diagram that illustrates the problem. Be sure to point out where the
exception occurs and what goes wrong. Hint: the problem would not occur if the execution of some
other instructions could be stopped in the cycle that an exception was detected. (9 pts)

In the figure below the ALU has a second output, which is 1 if the main output is not equal to

zero, 0, otherwise. The output of is C is 1 if the instruction is a type that sets the condition code

(e.g., add c); the output of is P is 1 if the instruction is predicated, zero otherwise.

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A

B

IMM

NPC NPC

ALU
Out

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

CC bit
register

is P

is C

nop

Addr

In

Mem

Out
B

ALU
Out

MD

=0

Condition-bit instructions change processor state (the condition bit register) one cycle earlier than other instructions.

Cycle 0 1 2 3 4 5
lw IF ID EX *ME* WB
xor_pc IF ID EX ME WB

In cycle 3, the lw instruction raises a page-fault exception in the same cycle xor pc is writing the condition bit. If the
condition bit is overwritten then it will be impossible to get the previous value and so when the trap handler returns,
xor pc may not execute, even though the condition bit was 1 (before being overwritten).

One possibility is to add a condition-bit-in-last cycle register. (This would have the condition bit value that was valid in
the previous cycle.) It would be used to restore the old bit value, details would be needed for a complete solution.(c) Modify the pipeline to fix the problem. (9 pts)

5



(d) Suppose the ISA also includes a new branch instruction, mnemonic b p, that tests the condition
bit (instead of a register) and branches if it’s true. To implement the branch instruction an ID-
stage take branch signal is needed. The signal should be 1 when a b p instruction that will be
taken is in the ID stage (zero otherwise). Show how the pipeline below would have to be modified
to provide this signal. Be sure that the modified pipeline executes the code below correctly and
without adding an unnecessary stalls. (8 pts)

sub_c r0, r1, r2 ! Set condition code.
b_p TARGET
add_c r3, r4, r5 ! Set condition code.
add r6, r7, r8 ! Doesn’t affect condition code.
b_p TARGET2

sign
ext.

IR

Addr
6..10

11..15

16..20
or

11..15

IR

IF ID EX WBMEM

IR IR

A

B

IMM

NPC NPC

ALU
Out

=0

Addr

Data

Data

Addr D In

+4

PC

Mem
Port

Addr

Data

CC bit
register

is P

is C

nop

Addr

In

Mem

Out
B

ALU
Out

MD

=0

Outline: In most cases the CC bit could be used to generate take branch, the exception is when the bit is set by the
instruction immediately preceding the branch. For that case the input to the condition bit register would be used (perhaps

stretching the clock cycle). A multiplexor would select the proper signal, controlled by the = C box.

6



Problem 3: Answer each question below.

(a) In class execution time has been modeled using the equation t = 1
φ

∑
i ICiCPIi. Given what

has been covered in class so far, to what degree is CPIi a function of the implementation and to
what degree is CPIi a function of the program? Explain. (9 pts)

CPI is strongly determined by implementation, for example, bypass paths would reduce the CPI. CPI is effected to a small
degree by the program, since different instruction orderings might effect their execution. For example, if a program has a
load instruction immediately followed by an instruction that uses the loaded value than the CPIl, where l is the class of
lw would be larger than a program in which loads were followed by non-dependent instructions.

(b) Synthetic instruction neg r1 assigns register r1 to the negation of its previous value, that is,
r1 = -r1. How would such a synthetic instruction be defined in DLX? (8 pts)

Solution: sub r1, r0, r1

(c) Packed-operand instructions (as found in MMX or VIS) and elaborate procedure call instruc-
tions (that perform extensive stack-frame preparation actions including register saves) are similar
in that they can replace many individual instructions. Provide contrasting reasons on whether or
not such instructions should be added to an ISA, including implementation factors. For exam-
ple, instructions should be added because the implementation while

should not be added because though certainly if it
would , but that’s not enough1. (9 pts)

The procedure call instruction should not be added because not much time would be saved over individual instructions
that perform the same actions. A procedure call function would constrain how procedure could be called. Packed operand
instructions would (usually) take no more time to execute than ordinary arithmetic instructions. The instructions that a
packed-operand instruction replace would take many cycles to execute, so there is a good reason to add them to an ISA.

1 This is just an example, don’t try to fill in the blanks!

7


