
EE 4720 Homework 6 Due: 4 May 1998

Problem 1: The program below executes on a single-issue (not superscalar) DLX implementation
that uses Tomasulo’s algorithm for dynamic execution. It also includes dynamic branch prediction
using an ID-stage BHT (but no target prediction) and a reorder buffer to support speculative
execution.

Instruction execution proceeds speculatively using a predicted path when a branch condition can-
not be immediately determined. When the condition is determined the instructions following the
branch are cancelled if the prediction was wrong (otherwise execution proceeds normally). Branch
instructions use a special branch functional unit, including reservation stations, located in the ID
stage. If a branch condition is available when a branch instruction is in the ID stage (the register
value is in the register file or can be bypassed to the ID stage that cycle) the branch is executed
normally. Otherwise it waits in the branch functional unit until the register value it needs is ready
while following instructions execute. Those following instructions may start at the branch target
(as soon as available) or the fall through (the instruction after the branch), depending on how the
branch is predicted. When the branch outcome is determined it is compared to the prediction,
instructions following the branch are cancelled if the prediction was wrong, otherwise execution
proceeds normally.

Assume that the reorder buffer has an unlimited capacity. At most one entry per cycle can be
retired from the reorder buffer, but any number of elements can be deleted in one cycle. The
system has five reservation stations per functional unit, including the integer functional unit, EX,
and the branch functional unit, BR.

Show a pipeline execution diagram for the code below when the branch is mispredicted as taken.
(That is, the outcome of the branch is not-taken, but it is predicted taken.) Show the contents of
the re-order buffer at each cycle, include only the instructions shown below. Show execution until
the reorder buffer is empty of the instructions encountered in the execution of the code below. For
each entry in the reorder buffer show the instruction mnemonic and place a check next to it if it
has completed execution.

The eqf instruction uses the floating-point add functional unit and bfpt uses the branch functional
unit described above. Note that there is a dependency between bfpt and eqf.

multf f4, f5, f6
addf f0, f1, f2
eqf f0, f3 ! Set floating point condition code to true iff f0=f3
bfpt TARG ! Branch if floating point condition true.
add r1, r2, r3
sub r4, r5, r6
...

TARG:
and r1, r2, r3
or r4, r5, r6
...

More problems on next page.

1



Problem 2: The program below runs on a system using a 3-bit branch history branch predictor,
with a branch predicted taken if the count is 5 or greater. Initially all entries in the branch history
table are zero. What will the prediction accuracy be during the execution of this program? (The
program never finishes, for simplicity consider execution until r1 reaches 231 − 1.)

add r1, r0, r0
LOOP:
andi r2, r1, #0x10
beqz r2, CONTINUE
addi r3, r3, #1

CONTINUE:
addi r1, r1, #1
j LOOP

Problem 3: Maybe, just maybe, the behavior of a branch in a procedure depends on where the
procedure was called from. Suppose it does. Show how to implement a branch predictor that
would use this information (the identity of the branch instruction and the caller of the “procedure”
containing the branch instruction) to select branch history. The size of the BHT should be limited
to 212 entries. Assume that procedures are always called using the jal and jalr instructions. Be
sure to show where the address lines for the BHT come from. The solution does not have to show
details of the counter predict and update hardware.

Problem 4: Show how 32 b× 223 memory devices can be connected to implement a 27-bit, byte-
addressed address space in which the CPU fetches 64-bit aligned doublewords. (Using the notation
from class, a = 27, w = 64 b, c = 8 b.) Indicate which memory devices store each of these addresses:
0x0, 0x7e33b8e, 0x3396891.

2


