
EE 4720 Homework 5 Due: 22 April 1998
The code below is referred to in the problems.

LOOP: ! LOOP = 0x5000
lw r1, 0(r2)
addi r2, r2, #4
beqz r1, TARG
sub r4, r4, r1
j LOOP

TARG:
subi r5, r5, #1
bnez r5, LOOP
and r4, r4, r6
or r4, r4, r7
sw 0(r8), r4
addi r8, r8, #4
jr r31

Problem 1: Show the execution of the code above up to IF of the third iteration on a 4-way su-
perscalar implementation of DLX which is statically scheduled, instruction fetches are 4-instruction
aligned, is fully bypassed including ID stage bypassing for branch conditions, and in which hard-
ware is fully duplicated (including writeback). Assume that the first conditional branch is not
taken in the first iteration, but taken in the second iteration, and that the code executes for many
iterations. Branches do not have delay slots, hardware cannot detect branch target/fall through
overlap, there is no branch prediction hardware, and no branch target prediction hardware. Indi-
cate the cancelling of an instruction by an x in the earliest cycle that the hardware could cancel
it. (Do not assume the implementation can predict the future using unspecified hardware or any
other means.) For example in a single-issue implementation:

Time 0 1 2 3 4 5 6
beqz r0, TARG IF ID EX MEM WB
add r1, r2, r2 IF x

...
TARG:
sub r1, r3, r4 IF ID EX MEM WB

Problem 2: Compute the CPI of the execution of a large number of iterations of the loop above
when 30% of the words starting at the initial value of r2 hold zero.

Problems on next page.

1



Problem 3: How effective and how practical would each of the following be in speeding execution
of the loop (compared to the problem-1 DLX implementation):

• Branch delay slots.

• Dynamic scheduling.

• Branch target buffer.

• Predicated execution.

• Loop unrolling. (See section 4.1)

The answer should specify how each technique would avoid specific bubbles (if possible) present in
the solution to problem 1.

Problem 4: A 4-way VLIW ISA (derived from DLX) includes predicated execution in the following
way: the first instruction of a bundle can be a bundle execution specifier (BX) instruction which
specifies whether the remaining three instructions execute. The instruction has three register
operands, corresponding to the second, third, and fourth instruction in the bundle. Each register
operand has a negation bit, indicated in assembly language by an exclamation point. If the negation
bit is zero then the corresponding instruction executes if the register contents is non-zero. If the
negation bit is one then the corresponding instruction executes if the register contents is zero.

For example, consider the following bundle:
bx r1,!r2,!r0
add r4, r5, r6
sub r7, r8, r9
div f0, f1, f2

The add executes if r1 is non-zero, the sub executes if r2 is zero, and the divide always executes.

If the first instruction of a bundle is not bx all instructions will execute (including the first, as an
ordinary instruction). Source registers in a bundle refer to values produced in preceding bundles.

Convert the DLX program below to this VLIW ISA.

beqz r1, ELSE
add r2, r3, r4
j ENDIF

ELSE:
add r2, r3, r5

ENDIF:
sub r6, r6, r2
bnez r1, SKIP
addi r7, r7, #1

SKIP:
addi r8, r2, #12
slt r1, r8, r9
and r10, r8, r11

2


