EE4702 Informal Cadence Verilog Simulation Guide

Bryan Audiffred

February 19, 2004

1 Introduction

This brief guide should get you up and running with the Cadence Verilog
simulator. It is by no means comprehensive. Please refer to the Cadence
documentation for the exhaustive information. Part of being a good engineer
is sifting through mountains of unreadable datasheets ©. I can help you with
getting started and performing the operations needed to succeed in the class,
but please refer to the documentation first.

2 Goals

After reading this guide you should be able to:
1. Compile Verilog source
2. Simulate Verilog source
3. Interact with and debug a Verilog simulation

4. Analyze waveforms with SimVision

3 Setup

We will be using the following cadence tools for Verilog simulation, the NC-
Verilog Compiler, SimVision interactive simulator, and SimVision Waves
waveform viewer. Don’t worry too much about the product names as they
change every release cycle. All of the cadence software is located in the path
/opt/local/cadence . The simulation tools are located in
/opt/local/cadence/LDV34, and the documentation is in the ./doc direc-
tory. A nifty documentation viewer is available by executing “cdsdoc”.

All paths are now automatically set when you log on, so you should be
able to execute all tools without trouble.

4 Creating Source Code

Verilog source is simply a text file. It goes without saying, but NC-Verilog
will not read in formatted Microsoft Word documents. The standard text
editor in the CDE dock will be dtpad. You may launch it from the dock
or from the command line. Be aware that moving text documents from
windows or mac may introduce undesired effects. You can use the dos2unix
command if you would like to convert a windows text file to unix ASCII
encoding. You may of course use any editor you wish, no doubt most of you
will.

5 Compiling Source Code

We will be using NC-Verilog. It is Cadence’s flagship HDL simulation prod-
uct. The "NC” refers to native compiled, a technique used to greatly en-
hance simulation speed, a large concern of customers. As an example, we
will compile the following inverter module, ” myinv”.

‘timescale 1ns/100ps

module myinv();
reg a;
wire b;

assign b = Ta;

initial begin
a=0;
#10;
$display("a=%d, b=%d",a,b);
a=1;
#10;
$display("a=%d, b=%d",a,b);
end
endmodule

You may compile the code with the command ncverilog myinv.v. The
compiler (Verilog is really an interpreted language, but there’s no point
quibbling over semantics) will elaborate (interpret) the verilog then move
onto a native compilation task that isn’t very important to this guide.
The ncverilog command actually calls three different commands in or-
der. Please refer to the reference manual for all of the details. Your errors
will occur in the elaboration stage. Since we have passed no command line
arguments other than the file, a simulation will immediately run. This is ob-
viously not the most useful way to debug a design. Also note that a myriad
of files will be created in the current directory.

5.1 The Command Line Simulation

To engage in an interactive command line simulation, invoke:

ncverilog -s +ncaccess+rwc <filename>

This will stop the simulator at time zero. The access flag allows you to
read, write, and change values in the design. No access will speed up the
simulation, but this will not be an issue for this class. There are useful
commands you may use to debug the design from the command line. A few
of them are:

e run — ”"Wesely, engage.” (How bad was that Star Trek reference?)
e run -step and run -next — step one line over or into subroutines

e stop -time 5 — stop sim after 5 time units. also -show and -delete
options

e describe — list info about a signal
e force mySignal 1 — force mySignal to 1. opposite is release.
e reset — reset simulation to zero

You may find help on any command with the command help.

5.2 The Graphical Tools

Command line simulations are fine for short runs, but you will likely find
the graphical environment more useful at first. Once you become a power
user, you may revert back to manual commands, but you will find menus
and buttons easier in the beginning. Predictably, the menus and buttons

execute commands in the program’s TCL shell (you can see the commands).
That is a good way to learn commands.

Invoke your simulation with the command:
ncverilog +gui +ncaccess+rwc <filename>
This will bring up the GUI environment. There will be three primary win-
dows, the ”Cadence NC Verilog” window that has your code and command
shell, the ”Navigator” window that shows the hierarchy and signals in your
design, and the wave window to add signals. The wave window might not
be present at first.

Let us walk through a simple example:

1. Invoke the tool on our sample inverter (make a file first - myinv.v)
with the command line:
ncverilog +gui +ncaccess+rwc myinv.v &
You should see a window with code and a command shell. We will call
this the main window. Press the massive VCR play button, and you
will get two lines of output as expected.

2. Now have a look at the navigator window. If it is not visible, select it
from the main window’s “Windows” menu. You will see the module,
and it has two signals. These are the current values of the signal. Use
the “Step Over” button in the main window to step through the code.
Note the time values in the command shell. You will notice something
like “Stepped to 10 NS + 1”. This means that you have gone through
one evaluation cycle after 10ns, Notice that b = a is not always true
until time has advanced.

3. Now let us add some waves. Reset the simulation (menu or command
line). Select both signals in the navigator and press the waveform
viewer button. Simvision will start, and the signals “a” and “b” will
be present. Press run and you will see a plot of the waveforms. I will
leave the buttons up to you, but one useful one is the magnifying glass
with the equals sign. It automatically zooms to fit the entire wave.

Despite the view of your code in the main window, it is only a cruel trick.
You may not edit the source. There is an edit option from the file menu.
The default editor is vi. You may change this in the options menu. Perhaps
you would prefer dtpad, so enter “dtpad %F” for the editor command. After
editing, you must perform the seemingly unnecessary step of reinvoking your
simulation from the file menu.

6 Basic Debugging

For some simulations, debugging will consist of running the entire simu-
lation and looking at all the waveforms. There are many more detailed
options available. Two useful functions are forcing and breakpoints. A force
statement will, as implied, force a signal to a value despite its real driver.
Breakpoints operate like a normal program and stop the simulation when a
particular statement or condition is reached.

To force signals, go to the Navigator window. Select the signal and press
the force button (looks like a hammer). Choose any value. Also from the
Navigator menu you may select the breakpoint button. This will stop the
simulation whenever the signal changes - very convenient.

To breakpoint an arbitrary line you must add the option “+nclinedebug”
to the end of your command line. You will get a performance warning, but
you will be able to stop at arbitrary lines. You may right click on the line
of source (actually I have only one mouse button, so I don’t know if it is
the right or middle button on a sun mouse) and set a breakpoint or use the
Show—Breakpoints menu in the main window to set a breakpoint.

7 Conclusion

The best way to learn any software package is to play around with it. My
recommendation is that you take this guide and spend an hour pressing
buttons and trying out new functions of the software. Run your own sample
design through it, and see what you can do.

