:ll.au EE 3756 - — Computer Organlzation

Control Logic for MIPS — fall 2003
#% Dec. 1. 2003

Confants

#

Single Cycle contral for the Data {page

Hard wired and H\:m“l;lﬂ':nmrnmd Dﬂ?l-i':htﬁr)
Multi Cycle control logic

Finite State Diagram and Finite State Machine

Programmable Logic Array

#Single Cycle control logic for the Datapath (page 85)

#timage001.gif
Control logie for Page 85 of Datapath..

We simply have to give a control signal for each Multiplexor | the ALU
and design logic for control circuit near the PC. '

1) the ALU

2) Mux at ALU

3)Mux at data Memery and ALLL
4iMux at Rd for Register file
Sjhux at line 15-11 for Register file
E)Mux at DAIN for Register file

7) Mux and control for NPC

B)Mux for the control after the ALU

1) the ALU
ALU can parform
AND,
OR,
BLT,
ADD,
sUB
operations.
We will generate those control signals from
OF code field[31:26] and func fleld[5:0]
‘We have control inputs for ALU,

ALU_OP[2:0] Operation
ooo AND

o001 OR

010 SLT

o011 ADD

100 suB
OP FUN ALUcperation : OP FUN ALU_oOP
AND 0 0 24 AND 000000 100400 0oo
ANDI & X AND 000110 XEXHXX 0oo
OR 0 0x25 OR 000000 100104 001
ORI d X OR 001101 J0000KX o
SLT 0 0x2a SLT 0oooao 404010 010
SLTI a X SLT 001010 XXOD0XK Mo
ADD] 020 ADD 000000 100000 011
ADDI g8 X ADD 001000 XOO0X 011
sue 0 ox322 sue 000000 100010 100
Lw 23 X ADD 100011 200000 o1
LB 20 X ADD 100000 XEHANK 11
sw b X ADD 100000 200000 01
SB 28 4 ADD 104000 00K 011
BEQ 4 X suB 000100 X000 100
BNE 5 X suB 000101 OO0 100

By using AND and OR gates, We could easily generate ALU_OP,
fier logic minimization, the output will be simpler.

There are many other ways to n this.
One simple way is using decoders to decode OP code and functon

field.
& inputs and 84 outputs for each decoder,
000 AND
001 OR
o0 ELT
011 ADD
100 EuUB

ALU_OP[Z] = x0y34 + xd + x5

ALU_OP[1] = sit add (02a) +a+ (020)+8 + 23+ 20 +3b + 28
= x0yd2+x10+x0y32+xB+x 35+ 32+ 43 +x40

ALU_OP[0] = oradd (025)+d+ (020)+ 8+ 23+ 20 +2b + 28
= aly3T+xld+ x0y32+xB+x35+u32+xa3+x40

#i image002.gif
R Fig. for Decoders

-

she
another way s using a ROM.
the address for the ROM is OP code and funcion field and the

ocuput Is ALU_OP.

#¥image003.gif
= Fig. for ROM

s
2) Mux at ALU

the Mux will select Dirt or sign extended immed,

if select for the Mux is 0, it will select Dirt otherwise select sign
extended immed.

We call the select signal Mux_ALU_CNT,

ANDI,ORI,SLTIADDI,LW,.LB.SW, SB use

immadiate values.

OF FUN AlUoperation : OP FUN Mux_ALU_CNT

ANDI & X AND 000110 30000 1
ORI d X OR 001101 XOO0XNK 1
5LT a x SLT 001010 0000 1
ADDI B X ADD 004000 X000 1
Lw 23 X ADD 100011 000000 1
LB 20 X ADD 100000 X3O0CGOC 1
W 2b X ADD 100000 000K |
88 28 X ADD 101000 XO0000C 1

We could implement the logic with AND and OR gates.
i We could use a decoder with OR gate to implement this.
We could use a ROM with Ebit address field,

3)Mux at data Memory and ALU.
the Mux will select ALU_output or Dout.
if select for the Mux s 0, it will select ALU_output ,
otherwise select Dout.
We cail the salect signal Mux_DataMerm.

Only LW and LB will set Mux_DataMem.

OP FUN AlUoperation : OPF FUN Mux_DataMem
Lw 23 x ADD 100011 X000 1
LB 20 X ADD 100000 000K 1

We could implement the logic with AND and OR gates.
#4 We could use a decoder with OR gate to implement this.
We could use a ROM with 6bit address fisld.

4)Mux at Rd for Register file
the Mux will select “#31" autput of another Mux.
if select for the Mux is 0, it will select cutput of another Mux
Jotherwise zelect "#31".
We call the select signal Mux_Rd_GNT.
Qnly Jal will sat Mux_Rd_CNT.

QF FUN AlUoperation : OPF FUN Mux_Rd_CNT
JAL 3 X X 000011 X0 1
We could Implement the logic with AND and OR gates.
i We could use a decoder to implement this.

SMux at line 15-11 for Register file
thie Mux will selact linea 15 to 11 or lines 20 to 16.
If setect for the Mux Is 0, it will select lines 15 to 11,
otherwlse select lines 20 to 16.
We call the select signal Mux_Lined1.
Whenever RT field acts like RD field, we will set Mux_Lineid,
Whenever they try to write something,
they need Rd field{some times Rt) .

op FUN AlLUoperation 1 OP FUN Mux_Linedq.
ANDI 8 X AND DO0110 XOOO00K 1
ORI d X OR 001101 200000 1
BLTI a X ELT 001010 XOOKMXN 1
ADDHI 8 X ADD 001000 XXXXXX 1
LW 23 X ADD 100011 X3000KX 1
LB 20 X ADD 100000 000K 1

We could implement the loglc with AND and OR gates.
We could use a decoder with OR gate to implement this.
We could use a ROM with 6bit address field.

B)Mux at D/IN for Register file

the Mux will select either output from Mux 3(control signal for this is

Mux_dataMam) or lines from NPC +4{PC +B).

if select for the Mux is 0, it will select output from Mux3,
atherwise select lines from NPC + 4.
We call the select signal Mux_Line_NPC_plus4.
Whenever we have to save NPG + 4, we will set Mux_Ling_NPC_plus4,

Only Jal and Jalr will set Mux_Line_NPC_plus4.

OF FUN AlUocperation : OP FUN ALU_OP: Mux_Line_NPC_plusd,
jal 3 X X 000011 200000 X
jalr © 9 X 000000 001001 X 1

We could implement the loghe with AND and OR gates.

We could use two decoders with OR gate and AND gate
to implement this,

We could use a ROM with 12bit address field.

T} Mux and control for NPC
We have to design control logic for NPC_CNT
{eontraller before the Mux).
The controller will do one of four things.
1)eheck If branch condition is met and if the instruction is branch
instruction, it will generate select signal
for the Mux{Mux_NPC_CNT =00).
the mux will select branch address(Target address at the figure).
2) check if the instruction is jump instruction, oV lJ.-.:LL
it will generate select signal
for the Mux(Mux_NPG_CNT =01).
thie mux will select jump address.
Ijcheck if the instruction is jr or jalr instruction,
it will generate select signal
for the Mux(Mux_MNPC_CNT =10),
the mux will select jump address(Drs from the reglster fila).
4)otherwise, either branch condition falled or regular instruction.
it will generate select signal
for the Mux{Mux_NPC_CNT =14).
the mux will select NPC +4 address lines.

The part of inputs for this controller come from
Contred Signal which tell the Instruction is
branch instruction|{NPC_CNT_SIG = 00) , or
the Instruction is jump or Jal Instruction(NPC_CNT_SIG = 01), or
the instructlon Is jr or jalr instruction(NPC_CNT_SIG = 10).
the instruction is regular instruction{NPC_CNT_SIG = 11).

The other part of inputs for this controller come
from Mux B which tells the branch condition met or

not{MuxE_output = 1 ; branch condition met).

The Control Signal should generate NPC_CNT_SIG,

- DF FUN AlUoperation : OP FUN
BEQ 4 X suUB 000100 3OOO00CK ﬂ#
BNE & X SUB 000101 3OO0 oo
J 2 X X 000010 00000 1]
jal 3 X X 000011 300000 |
Jr 0 & X 000000 001000 10
jalr 0 8 X 000000 001004 10

We could implement the logic with AND and OR gates.

#4 We could use two decoders with Inverters and AND gates to
implement this.

#% We could use a ROM with 12bit address field.

Now we need to generate signals MuX_MNPC_CNT.
1jcheck if branch condition is met and if the instruction is branch
instruction, it will generate select signal for the
Mux{Mux_NPC_CNT =00).
the mux will salect branch address(Target address at the figure).
if NPC_CNT_SIG =00 and Mux_output =1 , then
Mux_NPC_CNT[1:0] =00.

a
2} check if the instruction is]uvﬂﬁumc:rlfn, it will generate select

signal for the Mux(Mux_NPC_CHNT =01).
the mux will select jump address.
if NPC_GNT_SIG =01 then Mux_NPC_CNT[1:0] = 0.

3)check if the instruction is | ; ction, it will generate select
signal for the Mux{Mux_NPC_CNT =10).
the mux will salect jump address{Drs from the register file).
IFNPC_CNT_SIG =10 then Mux_NPC_CNT[1:0] = 10.

4jotherwise, elther regular instruction, or branch instruction and
branch condition failed .
it will generate select signal
for the Mux(Mux_NPC_CNT =11).
the mux will select NPC +4 address lines.

if NPC_CNT_SIG =11 or

NPC_CNT_SIG =00 and Mux_output=0,
then Mux_NPC_CNT[1:0] =11

#it We could implement the lagle with AND and OR fates.
We could use two decaders with OR gate and AND gate
to implement this.

We could use a ROM with 12bit address field.

The logic is simple, so try to Implement with gales.

Mux_NPC_CNT[0] =SIG[0] + MUX' *SIG[I]

CNT_SIG 00 01 11 10
VPC 0 1 1 1 o
MUX 1 B 4 4 ¢

Mux_NPC_CNT[1] = SIG[1] + MUX *sla[or

NPC . CNT.SIG 00 01 11 10
o 1 01 1

MUX 1 0 o0 1 1

8)Mux for the control after the ALL

the Mux will gelect sither zera from ALU or zerg’,

if select for the Mux is 0, it will select zaro, otherwise select

Zero'.

We call the select signal Mux_Branch.

Whenever wa have BEC, Mux will select zera otherwise , select zero',

OF FUN AlUoperation : OP FUMN Mux_Branch
BEQ 4 X SuB 000100 JOOO0CK 0

BNE 5 X sUB 000101 200000 1

We could implement the logic with AND gate and Inverters,
#4 We could use a decoder to implement this.
this is just output x5 of OP code decoder.

9)R/W signal for Data memory.
RW = 0 means read.

=5 |

RW = 1 means write.

OP FUN ALUoperation : OP FUN RW
Lw 23 X ADD 100011 00000 0
LB 20 X ADD 100000 000X 0
SW b X ADD 100000 X000 1
S8 28 X ADD 101000 XXXXXX 1

##We could use a decoder to implement this.
this Is (x43 + x40} of OP code decoder,
Muli Cycle control logle
et Hard Wired and Micro programmed Controller #2
We have a high level language programic program ..)
We could compile it to Mips assembly language instruction{complier).
Wi colild translate assembly language to Mips machine
language(assembler).
{c program => agsembly language => machine languags).
For a CPU with a hardwired controller:

each machine language instruction is decoded and executad like & finite
state machine.

For a CPU with a micro programmed controller:

Each machine language instruction is defined by a set of microinstructions
and each microinstruction is decoded and

Executed by micro sequencer (Micro CPU)

Multl Cycle ImplamentationgiEie

#m P-EII'fbﬂ'l"lBﬂﬂE T LB S B8 6 L2 = m e S e i g m) WY H 8 10 I

So far, we assume we could finish every instruction in a single cycle,
which means we have to finish every instruction in a fixed time.
That means we have to set the clock frequency to the slowest instruction,
Usually memory access instruction or floating point instruction is
the slowest one,

Although the CPl{cycle per instruction) Is 1, the overall performance
of a singlecycle implementation is not likely to be very good,

since several of the instruction classes could fit in a shorter clock cycla.

One way to solve the problem of single cycle iz
Break the instruction into smaller steps {_S-I'-a_"‘e_s

When we break the instruction make sure all the

to have similar length(this is important)
Execute each step (instead of the entire instruction) In one cycle
Cycle time: time It takes to execute the longest step

The advantages of the multiple cycle processor;

Cycle time is much shorter
Different Instructions take different mherm of steps C_S %@r_ ffg‘J
to complete

We have examples of cylces below.
Use ALL more than once per instruction

Question: What will be ong instruction which uses ALU
maore than once per instruction?
Answer:

I Execution time SASAESEEEHTHIE

We have to think execution time equation.

Execution time = Instructions/Program * Clock cyclesiinstruction
* SecondsiClock cycle — ﬁ_sgg&
Performance of single cycle machine. s 5'5 L)

one program consists of 24% loads, 12%stores,
44% ALU instructions 18% brancheas
and 2% jumps{ Instruction mix),

Assume operation times for the major functional units are following:
Memory units: 2 ns{nano seconds).

ALU and adders: 2 ns.

Register file(read and write): 1ns.

Instruction
class Fuctional units used by the instruction class
(IF : instruction fetch; MEM: Memory access;)
ALU type IF: Registeraccess: ALU: Register access

Load IF: Register access: ALU: MEM: Register access
Store IF: Register access: ALL: MEM:
Branch IF: Register access: ALL:

Jump IF:

We will compute the required time for each instruetion class

ALU type 2 0 1 Ens
Load 2 1 2 2 1 Bns
Store 2 1 2 2 0 Tns
Branch 2 1 2 1] 0 §ns
Jump 2 a 0 o [1] 2ns

Question: What will the clock cycle for a single clock cycle machine?

Answer:

A mﬂ:ln-wﬁuﬁdﬂ-:lnﬁﬂ hMI mwmm
between Zns and Bns.
What will the average time per instruction?
CPU clock cycle = B*24% + 7 *12%+ 6%4d%+ 5*19%+2*2%,
= §.6ns.
A little bit fast but not much difference.

##Performance of a single -cycle cpu with floating point Instructions#ikg

Iloads comprise 31% of the instructions.
stores comprise 21% of the instructions.
R format instructions comprise 27% of the mix

FP add and subtract take the same ime and together total 7% of
the instructions o

FP multiply and divide take the same time and together total 7% of
the instructions

Assume we have a floating point unit that takes 8ns for addition
and 16ns for multiply.

mmml-bwlmgwlllihhfbrhﬂnﬂu poim-dd?
Mmr

Mnn: How long will it take for the fleating point multiply?

Answer:

What will the average time per instruction? _
CPU clock cycle =6*31% + T *21%+ 6" 27%+ 5'5%+2°2% +12"7%+20°7%
= Bns.

Improved performance = 20/8
mhhﬂ- reason we m make multi-cycle implementation.

Go back to page 85 datapath.
Question: Is there any way to reduce HIW?
Answer:

We have two memories : we will combine twe memaries
into a single memory unit for both Instructions and data.
We have two ALUS: we will combine two ALUs into a single ALL.

i
Question : What kind of H'W do we need after making the modification.

e e

i

New data Path. Figure 5.33 .page 383.
e TS

1)instruction fetch step

2jinstruction decode and register fetch step

3)Execution, memory address computation, or branch completion
(change the PC nﬂ: hl%hm:ldﬂﬂl

4)Memory access er R type completion step

SiMemory read completion step

1)instruction fetch step
IR = Memory[PC];

PC = PC +4:;
IR : Instruction Register,

;"SFFRIIM'%;
ALUOUT = E +4+ (sign-extend(IR[15-0]) << 2);

3)Execution,memory address computation, or branch completion
(change the PC with branch target address)
Memory reference:
ALUCut = A + sign extend(IR[15-0]);
Arithmetic logical instruction(R type)
ALUOUL = A op B:
Branch:
if (A = Be) PG = ALUQut;

PC =PC31-28] || RS0 <<2;; || WCAUS Concy fey 4 fiok
ﬂﬁmnﬂlmﬂrﬂmp.hmuﬂnnmmm

MDR = Memory [ALUCut);
or
Memory [ALUQUL) = B;
Arithmetic logical instruction(R type)

!:t]l_l;ndnrr read completion step
GFR[IR[15-11]] = MDR;
R Control for Each State S8y

Finite State Machine(FSM).
FSM s used to specily the mull cycle contral,
FEM consists of a set of states and direct/ons on how to changa
states,

FEM roviaw.

Finite state machines:

a set of states and internal storage

next state function (determined by current state and the input)
output function (determined by current stata and possibly input)
We'll use a Moore machine (output based only on current state)

if
Finite State Machine Concept.

Gl
Finite State Machine Controller

-gif
Finite State Diagram Fig, 5.42.

Logic Representative; Logic Equations

- Next state from current state

- State 0 -» State1

- State 1 -> 52,56,58 89

- State 2 53,55

- Btate 3 =54

- State 4 ->State 0

- State 5 = State 0

- Btate § = 87

- State T -> State 0

- State 8 = State 0

- State 9 > State 0

Or How can we reach each state.
prior state & condition

54, 55, 87, 58, 59 > Stateld
S0 -> State {
51 &{op=sw || op = lw) > State 2
52 &op = lw > State 3
S3 = Stata 4
State 2 R op = sw == State 6
%1 & op = Rtype -> State §
State § = State 7
S18 op=bheq -» State 8
State 1 &uop =] = State 9

Implementation Tech ' med Logic
Lo nique: Programmed Logic Arrays
Fig PLA..

BEOEEOEE O

Implementation with Decoders

T"ﬂ
—« | &we
o 6 '
' %83
— ¥0
ha 6o 64
Fun g .
_L_ﬂ_

ROM
12inputs
(Address)

L

HEE

it
it

g
3

[

suge By
=g

kg1
T

§+

gy
uonanysy|

k-l
1 vonannzy

[2s-az]
Loy

l1z-gzl
[LETH LR

el

ey
B

Asowiagy

SRR

T=HHE

ad

AUNDE

PCWrile

r PCWiitaCond
1]

MemRead

KMemW rite

IR W rile

Contrall e ——
Giioge MemioRe

FCSource

Qulpuls 1 ALUSre8
ALUSrcA
RegW rite
RegDsl

l

N3l
NG§2

NE1
Inpuls
P K50

lnstruclion regisiar State ragistar

epeods field
? 4 [{

g

Lo
—Opd
Opa L_D_
Op2 I_D_
ot I_D_
N
-
Lp-
i
50
L

POl
POWriaCand
far
Mamfged
Mesmihiritg
IRl
Miemmafieg
PCSouce
PCSourcal
AL
ALUCDD
ALLSrcBY
ALLISreRD
ALLISen,
Ragiirine
RegDst
KE3

&2

H31

NS0

iy

0ps ~ Tpe

A —

0p3 B

02—
1 r—

(0 Do
i

5l

)

0=00m 6=0110
1=000 7=011

=001 8-1

=001 81

0100 10=101
=0 1=

NSt
NSt
NS0

