Branch Prediction

This Set: How to predict branch direction targets.

Review Material

McFarling 93, a concise description of basic branch prediction techniques.

EE 4720 Lecture Set 12

References at end of set.
Branch Prediction Techniques

Basic Techniques (Covered in EE 4720)

- Bimodal (Two-Bit Counter, don’t confuse with bi-mode)
- gshare (Global History \oplus PC)
- Local History

Advanced Techniques

- Variation on one or more basic techniques.
Performance of Basic Techniques

Bimodal (Don’t confuse with bi-mode.)

Accuracy: 93% on SPEC89. (McFarling 93)

Advantage: Fast warmup.

Limitation: Only works for highly biased branches.

gshare (Global History ⊕ PC)

Accuracy: 96% on SPEC89. (McFarling 93)

Advantage: Handles a wide variety of branches.

Limitations: Slow warmup, large table needed to avoid collisions.
Local History

Accuracy: 97% on SPEC89. (McFarling 93)

Advantage: Can precisely predict short loops.

Limitation: Cannot predict one branch based on another.
Advanced Techniques

Each makes better use of basic techniques.

Hybrid Predictor: Choose best predictor for each branch.

Skewed: Avoid collisions by storing counter in multiple places.

Bias Filtering: Avoid collisions by accounting for bias.

History Filtering: Use a subset of history appropriate for branch.
Hybrid Branch Predictors

Primary Reference: McFarling 93. Early work on hybrid predictors, also provides good summary of basic predictors.

Other references: Chang 94, Evers 96.

Hybrid Branch Predictor:
A branch predictor that predicts a branch by choosing a prediction made by one of several predictors. The choice might be based on a chooser table, or by using the majority prediction.

Status: Used in existing processors, including Alpha 21264.
Hybrid Branch Predictors

Problem: Some branches best predicted by local predictor, some by bimodal, etc.

Solution: Use several predictors.

Details:

Maintain two or more predictors.

Each one is updated for every branch.

Use a chooser table (also called a metapredictor) to pick the best predictor . . .

. . . or have (odd number of) predictors vote on a direction.

(To be covered in detail on blackboard.)

Typical Configuration

Use gshare and local predictors.
Primary Reference: Michaud 97.

Problem: Collisions in PHT.

Solution: Predict using counters stored in several places within PHT.

Details:

Use three PHTs.

Hash (combine) global history with PC three different ways . . .
. . . creating three different indices (index 1, index 2, index 3, one per PHT) . . .
. . . and use these to lookup one counter in each PHT.

Use majority prediction.
Bias Filtering

Problem: Collisions by highly biased branches.

Solutions:

Use separate PHTs for taken and not-taken branches. (Bi-Mode, Lee 97)

Use PHTs only for branches not predicted by bimodal predictor (YAGS, Eden 98).

If bit in instruction cache set invert prediction. (Agree Sprangle 97)

Details covered in class.
History Filtering

Problem: Global history has irrelevant outcomes.

Solutions:

 Adjust length of global history. Juan 98
 Take a weighted combination of outcomes, with weights chosen for branch.

Details to be added. (13 September 2003, 16:06:57 CDT)
Branch Prediction References

Hybrid predictors.

Evers 96: Marius Evers, Po-Yung Chang, and Yale N. Patt, “Using hybrid branch predictors to improve branch prediction accuracy in the presence of context switches,” in *Proceedings of the 23th annual international symposium on computer architecture*, May 1996, pp. 3-11.

Skewed predictor.

Bias Filtering Predictors

History Filtering