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Abstract

Wireless links form a critical component of communication systems that aim to provide
ubiquitous access to information. However, the time-varying characteristics (or “state”)
of the wireless channel caused by the mobility of transmitters, receivers, and objects in
the environment make it difficult to achieve reliable communication. Adaptive signaling
exploits any channel state information (CSI) available at the transmitter to provide the
potential to significantly increase the throughput of wireless links and/or greatly reduce the
receiver complexity. As such, adaptive signaling has been a topic of significant research
interest in the last decade and has found application in numerous commercial wireless
systems, ranging from cellular data systems to wireless local area networks (WLANs).
However, one of the great challenges of wireless communications is that it is difficult
to obtain perfect CSI, since the CSI that the transmitter employs is inherently noisy and
outdated. In response to this challenge, we have championed the idea of choosing the
appropriate transmitted signal based on statistical models for the current channel state
conditioned on the channel measurements. In this semi-tutorial paper, we overview how
this class of methods has been developed over the last decade in design for single-antenna
systems, and then present novel recent designs for multiple-antenna systems. Numerical
results will demonstrate that such an approach provides a robust method for improving
system data rate versus the commonly practice of employing link margin to compensate
for such uncertainties.
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1 Introduction

One of the foremost goals of modern technology is providing ubiquitous access to information.

Under normal conditions in locations with a developed infrastructure, wireless communications

is an attractive method of untethered access that extends the wired infrastructure to conve-

niently complete this ubiquity. However, in developing locations or in disaster situations, the

wired infrastructure may not exist or be inadequate, and thus wireless communications may be

the most feasible option for rapid and/or cost-effective connectivity. Hence, wireless communi-

cation links are an integral and important part of modern communications. However, although

clearly vital, wireless links present one of the most challenging of communication channels.

In particular, the transmitted radio signal reflects off the numerous objects commonly encoun-

tered between the transmitter and receiver, and, hence, the receiver sees the superposition of

numerous copies of the transmitted signal. Due to the different path-lengths for the various

reflections, these signals experience small relative delays, thus causing the multiple copies to

arrive with different phases. In locations where these phases add constructively, signal en-

hancement takes place; in locations where the phases add destructively, signal strength is lost.

Hence, one way to picture the result is as an interference pattern in space set up by the super-

position of the transmitted and reflected waves. The resulting “multipath fading” is one of the

distinguishing features of wireless system design and provides some of its greatest challenges.

Another characteristic of the wireless channel is that the channel (and thus its quality) can

change at a rapid rate relative to traditional wired or satellite links. In fact, this can happen at a

number of different time scales. At the longest time scale, changes in the distance between the

transmitter and receiver (path-loss) and the existence of large objects between the transmitter

and receiver (shadowing) can greatly alter signal strength. At short time scales, the multipath

fading described above can significantly change. For example, consider a fixed transmitter and

set of objects that reflect the signal. Per the discussion above, the transmitted signal reflects off

these objects to form a spatial interference pattern. Since the receiver sees different channel

characteristics as it moves across the interference pattern, any receiver mobility results in a
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communication channel with time-varying characteristics. Of course, the interference pattern

is not static, either, and movement of either the transmitter or objects in the environment will

cause it to change. Thus, the proper view is of a constantly shifting interference pattern with a

receiver moving through it.

Because of this highly variable nature of the wireless link, it is difficult to prescribe a com-

munication system that works well across all potential conditions. In particular, provisioning

such that the system works with extremely high reliability can lead to a very conservative

design with a significant reduction in the allowable data rate. One method of avoiding such

a conservative approach is to adapt the transmitter as the propagation environment evolves.

In particular, if one knows the characteristics of the current communication channel, one can

match the current transmission to such. As a simple rough example, one can think of main-

taining constant reliability by using a high data rate when the channel is good and a lower data

rate when the channel is bad. Hence, rather than having to take a conservative position so as to

make sure communication is reliable when the channel is bad, one envisions achieving what-

ever the channel will currently allow. Such techniques have been employed in wired channels

to great success; for example, the discrete multitone approach (DMT) to digital subscriber lines

(DSL) adapts its rate to the quality of the channel on each tone[1, 2].

Clearly, due to its variability, the wireless channel suggests an adaptive approach as well,

and the idea was first investigated nearly four decades ago [3, 4]. Due to significant hardware

advances, the last decade has seen rapid penetration of this adaptive approach into wireless

applications and major industrial standards. Slow adaptations exploit long-term effects (path-

loss, shadowing), and have been employed in numerous recent standards. For example, the

second generation (2G) cellular communication systems of the late 1990’s employed power

control and rate adaptation techniques to solve the near-far problem and increase spectral ef-

ficiency [5, 6, 7]. In third generation (3G) cellular standards, faster (up to 1500 updates per

second) and more sophisticated adaptive techniques are adopted to fight path-loss, interference

and even multipath fading[8, 9, 10]. In addition, there has been recent penetration into the

numerous WLAN air interfaces(e.g. IEEE 802.11), where multiple data rates are supported for
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the frame transmission to adapt to underlying channel qualities[11, 12, 13, 14]. In the IEEE

broadband wireless access (BWA) standard 802.16, adaptive burst profiling is employed to ad-

just the modulation and coding schemes on a user-by-user and frame-by-frame basis[15]. In a

promising mobile data system, Qualcomm’s Flash-OFDM, coding and modulation are adapted

quickly on a per-segment basis to each of the underlying channels[16].

Per above, it is the variation over time of the wireless channel that makes adaptation so

attractive for improving performance. However, it is this same variation that makes adaptation

in the wireless environment difficult. In particular, for the transmitter to adapt to the channel,

it must obtain knowledge of the current state of such. This can be obtained via measurements

fed back from the receiver, as in frequency division duplex (FDD) systems, or it might exploit

reciprocity of the channel to obtain such by measuring the signal characteristics of a signal fed

back from the receiver, as in time division duplex (TDD) systems. However, these estimates

are perturbed by noise, of course, and, more importantly, by the time they are used these

estimates have become outdated. As will be reviewed and further established below, such

errors in measurements of the current state can have a significant impact on adaptation. In fact,

we assert that dealing with this difficulty of outdated and/or noisy channel estimates is one

of the key defining features of adaptation in the wireless environment, and this paper will be

devoted to various methods of coping with such.

This paper is organized as follows. Section 2 briefly reviews various methods developed

to perform adaptive coding with outdated and/or noisy measurements in the single-antenna

case, and provides a basic tutorial treatment of the approach taken in [17]. Section 3 reviews

analogous work for multiple-input multiple-output (MIMO) systems and then presents a novel

technique for performing adaptation with full outdated CSI in such systems. Section 4 provides

conclusions and directions for future work.
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2 Adaptive Modulation in Single-Antenna Systems

2.1 System model and background

The basic system model to be considered is shown in Figure 1. The goal is to transmit the

stream of information bits {bi}, assumed to be an independent and identically (IID) sequence,

over the wireless channel in such a way to achieve high reliability in the sequence {b̂i}, the

corresponding stream of information bit estimates at the output of the receiver. A standard

digital communication transmitted signal is given by s(t) =
∑∞

k=−∞ zkp(t− kTs), where zk is

the kth (complex) data symbol, p(t) is a unit energy pulse that satisfies the Nyquist condition

and thus results in no intersymbol interference in the samples (spaced at Ts) of the output of

the matched filter at the receiver [18, pg. 543], and 1
Ts

is the symbol rate. The additive noise

n(t) is a zero-mean white Gaussian random process with two-sided power spectral density N0

2
.

The multipath fading is modeled as a complex multiplier X(t), thus implying that the mul-

tipath fading causes the signal to experience a power gain or loss, but no pulse distortion.

This model, termed frequency-nonselective fading, is appropriate for a narrowband wireless

channel [18, pg. 816] or a single subchannel of a wireless multicarrier system [19]. Fol-

lowing the standard practice of assuming that there are a large number of paths, the Gaussian

wide-sense stationary uncorrelated scattering (GWSSUS) fading model [18] is assumed, where

the independent component Gaussian processes are zero mean with autocorrelation function

RX(τ); that is, X(t) = XR(t) + jXI(t) is complex Gaussian, where XR(t) and XI(t) are

the respective real and imaginary parts of X(t), j =
√−1, E[XR(t)] = E[XI(t)] = 0, and

E[XR(t)XR(t + τ)] = E[XI(t)XI(t + τ)] = RX(τ). Such a zero-mean complex Gaussian

channel is termed a Rayleigh fading channel [18]. It is also assumed that X(t) varies slowly

enough that analysis can be performed by assuming it is constant over the support of the pulse

p(t) of a single data or pilot symbol.

The key difference between the system model of Figure 1 and that of a standard communi-

cation system is the availability at the transmitter of the vector X̂ of channel fading estimates,

where τi+1 > τi,∀i, and N is the number of outdated channel estimates employed. These
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estimates can be obtained via literal feedback of measured fading values from the receiver, or

the estimates can be measured by the transmitter from a signal sent from the current receiver

to the current transmitter. Per the Introduction, using such estimates to adapt the transmitted

signal to the current channel conditions can greatly improve performance of wireless systems,

and many authors have considered the system design and the resulting potential gains.

Most previous authors have assumed that that current channel state can be estimated with-

out error from the channel measurements. First, consider the fundamental limits of system

performance improvement from the perspective of information theory. The seminal work by

Goldsmith and Varaiya [20] indicates that the Shannon capacity of fading channels with per-

fect CSI at both transmitter (CSIT) and receiver (CSIR) can be achieved by varying both the

transmission rate and power, although adapting the rate alone loses little optimality. Results

in [21, 22] show that the variable-rate variable-power coding scheme in [20] is not mandatory

to achieve the ergodic capacity of fading channels with perfect CSIT and CSIR. In particular,

the channel capacity can be reached by using a single codebook with a waterfilling-type [23]

power allocation.

If the channel correlation model is exactly known to the transmitter, the system model

in Figure 1 can be treated as a special case depicted in [21], where the fading process has

memory as characterized by the correlation function. When channel memory is modeled by a

Markovian process and is assumed perfectly known to the receiver, [24] obtains the capacity of

such channels with delayed feedback. In particular, shadowing channels with delayed feedback

are investigated where the correlation structure is captured using the first order autoregressive

(AR) model. Again, exact knowledge on such fading correlations is required to compute the

capacity. However, as pointed out in [25], there in general does not exist analytical solutions

to the capacity of Markovian channels with delayed feedback, not to mention the case where

only imperfect CSIR is available.

As demonstrated in [20], even the improvement on ergodic capacity with perfect CSIT

and CSIR over the case with only perfect CSIR is not significant. We therefore do not expect

significant capacity improvement in the presence of imperfect CSIT and feedback delay. Other
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than the imperfect CSI and delay introduced in providing CSIT, an additional challenge we are

going to confront is the uncertainty about the exact fading correlation function in our system

model, which will be discussed further below.

Information theory results assume an infinite code length and random coding. Although

such codes are impractical in practice, recent advances in turbo and low-density parity-check

(LDPC) codes are approaching the Shannon limit; more importantly, information theory often

provides guidance to practical communication system design [25]. But such guidance must be

interpreted carefully in the presence of practical constraints.

In the case of adaptive signaling design for frequency-nonselective Rayleigh fading channel

with perfect CSIT, Shannon results suggest that the adaptive approach only slightly improves

the capacity over the non-adaptive one, which implies that adaptation is not attractive in this

scenario. However, in contrast to what Shannon theory suggests, adaptive coding has proven to

be effective for wireless channels with perfect CSIT in the context of communication theory.

In particular, it has been demonstrated in [26] that for adaptive uncoded M -ary quadrature am-

plitude modulation (M -QAM), the gains through adaptation over the frequency-nonselective

Rayleigh fading channel are enormous.

However, in systems with significant error control coding and interleaving [27, 17], the

gains, although still significant, are much smaller. In particular, non-adaptive coded and in-

terleaved systems are able to exploit diversity to significantly shrink the gap between their

performance and the channel capacity. Since the capacity of adaptive systems is only slightly

larger than non-adaptive systems, the potential gains are much smaller in coded systems, and,

as noted above, almost disappear altogether in the limit of long channel codes.

Thus, it is reasonable to conclude that the gains of adaptive coding in terms of average rate

are roughly inversely proportional to the amount of coding/decoding complexity in the system.

Viewed differently, it could be stated that adaptive coded systems allow identical performance

to non-adaptive coded systems at a significantly reduced receiver complexity.
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2.2 Distribution of Fading Variables Conditioned on Measurements

The key to the design of an adaptive scheme is the selection of the transmission parameters

based on the measured estimate. Since data rate is the most common and powerful adaptation

in practical systems, the focus here is on such. We also consider only uncoded quadrature

amplitude modulation (QAM) for simplicity of exposition, although the extension to coded

systems is easily made through the techniques of [17, 28]. The data rate in bits for a given

symbol is given by log2 M , where M is the number of signals in the signal set employed.

Thus, the key is to select a signal set M to be employed when X̂ = x. Suppose the potential

signal sets consist of 0-QAM (no transmission), 2-QAM (BPSK), 4-QAM (QPSK), 16-QAM,

. . ., Mmax. Specifying an adaptive scheme is then equivalent to partitioning the space of all

vectors X̂ into disjoint regions where each region corresponds to the set of measured vectors

under which M -QAM will be employed.

Following [29], let the symbol of interest be the kth symbol, whose pulse starts at time

kTs, and assume temporarily that RX(τ) is known at the transmitter. Also assume that the ith

most recent channel estimate was made using a pilot symbol with average received energy Ep

over the support of its pulse p(t) that starts at kTs − τi, and let X̂(kTs − τi) be the product

of the sample of the matched filter output for the pilot symbol and
√

2
Ep

. Denoting Y as the

magnitude of the fading that multiplies zk in the matched filter output for the kth symbol and

using the fact that linear functionals of a Gaussian random process are jointly Gaussian, Y is

Rician when conditioned on the vector X̂ , with probability density function:

pY |X̂(y|x) =
y

σ2
e−

y2+s2

2σ2 I0

(ys

σ2

)
, y ≥ 0, (1)

where I0(·) is the 0th-order modified Bessel function. Using the assumption that X(t) can be

assumed constant over the support of p(t) and normalizing the fading such that E[(XR(kTs))
2] =

E[(XI(kTs))
2] = 1 (Hence, for exposition purposes, making the average received energy twice

the average transmitted energy, which will be accounted for below.), the noncentrality parame-

ter in (1) is given by:

s2 = (ρT (ΣX + σ2
ε IN)−1xR)2 + (ρT (ΣX + σ2

ε IN)−1xI)
2
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where IN is an N by N identity matrix, and σ2
ε = 1

Ep
N0

is the variance of the noise on the

in-phase (or quadrature) component of a channel estimate. The (m,n)th element of ΣX , the

N by N autocorrelation matrix of the in-phase component of X̂ when the channel estimates

are noiseless, is given by RX(τN−m+1 − τN−n+1), and the correlation vector of the in-phase

component of X̂ with the in-phase component of the fading of interest is given by ρ, where

ρi = RX(τN−i+1). The parameter σ2 in (1) is the mean squared error of a minimum mean

squared error (MMSE) prediction of the in-phase (or quadrature) fading of interest, and is

given by σ2 = 1− ρT (ΣX + σ2
ε IN)−1ρ.

To interpret (1), consider the case of a single outdated noiseless estimate (N = 1). Let

h
∆
= |X̂(kTs−τ1)|. For N = 1, the parameters for (1) simplify to s2 =

(
ρ1√
1+σ2

ε

)2 (
h√
1+σ2

ε

)2

and σ2 = 1 −
(

ρ1√
1+σ2

ε

)2

. There is an important observation to be made: delay between

channel measurement and data transmission or noise in the estimates transforms the adaptive

signaling problem from signaling for an additive white Gaussian noise (AWGN) channel with

a modified received signal-to-noise ratio as in [26], to signaling for a Rician channel on which

not only does the average received signal-to-noise ratio vary with the estimate but the Rician

parameter varies as well.

Hence, (1) gives a nice characterization of the problem. If the predictions are accurate (i.e.

σ2 is very small), one can simply predict the channel and assume that that prediction is perfect

[30, 31]. If the predictions are inaccurate (i.e. σ2 is not very small), then one needs to take this

inaccuracy into account, and it is the latter case that is considered here.

2.3 Potential designs

There are a number of methods for dealing with the case of outdated or noisy estimates in

the wireless channel. In this section, we briefly review the various types before focusing on a

specific type of adaptation.

The first method of dealing with inaccuracy in the channel measurements is to simply

account for it in the link budget; in other words, a few dB of energy is expended to bring the
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performance of the adaptive system with inaccurate estimates to that of the adaptive system

with perfect estimates. Such an approach has the advantage of not only being simple but also

robust, since it needs not assume anything about the characteristics of the inaccuracy besides

a rough estimate of the amount of degradation incurred. Its disadvantage, as we will see very

clearly below, is that such an approach also limits the performance of the system.

A second approach is to develop a system architecture where you devote a certain amount

of resources (e.g. code rate) to correcting errors in the state measurements.

A third approach to dealing with the outdated nature of the channel estimates is to em-

ploy prediction[30, 31]. In particular, outdated estimates of the channel are used to predict the

current state of the channel, and then that estimate is used to perform adaptation of the trans-

mitter. Clearly, such an approach is effective as long as the predictions are accurate. Potential

limitations include the lack of knowledge of various environmental parameters (e.g. the auto-

correlation function of the multipath fading), which are notoriously difficult to estimate. Also,

in extreme mobility, the prediction becomes noisy, and then system performance degrades.

The last approach, the one considered extensively here, can be used on the raw channel

measurements or in conjunction with a noisy predictor. Rather than trying to make a prediction

of the channel, the uncertainty in the current status of the channel state is taken into account in

much the same manner as system noise or fading is treated. In particular, the optimal adaptation

scheme is to determine the current transmission parameters by simply finding the scheme that,

when conditioned on the raw channel measurements, provides the highest rate with acceptable

reliability over all possible correlation models in a uncertainty set [17].

2.4 Model-based Approach
2.4.1 Robustness

Prediction-based methods are effective if there is only moderate mobility and RX(τ) is known

exactly at the transmitter. However, spectral estimation (i.e. estimation of RX(τ)) is notori-

ously hard, and thus we seek methods that do not require knowledge of such. In particular,

we seek design methods that will guarantee performance for each observation value X̂ = x
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and any particular autocorrelation function in a given class R. As in [17], we will consider

schemes that only employ a single outdated channel estimate (N = 1). The resulting methods

will be applicable to two cases: Robust adaptive signaling with N = 1, and adaptive signaling

with arbitrary N when RX(τ) is accurately estimated. Design for the second case is a simplifi-

cation of design for the first case; thus, robust adaptive signaling with a single outdated fading

estimate will be considered. This consists of guaranteeing results for all possible correlation

coefficients ρ1 ∈ [ρmin, 1], where ρmin is the minimum correlation coefficient over RX(τ) ∈ R
between X̂R(kTs − τ1) and XR(kTs).

2.4.2 Design Rules

The design rules for uncoded systems have been well-established by a number of authors [32,

17, 26]. The signal sets considered in this section will be 0-QAM (no data transmitted), BPSK,

QPSK, 16-QAM, 64-QAM with two-dimensional Gray mapping, although the extension to any

set of signal sets is immediate.

Following [17], let Pb be the target bit error probability for the system, which operates

at the average received signal-to-noise ratio Es

N0
, where Es is the average received energy per

QAM symbol. For now, assume that the average energy Es is constant across symbols. Energy

adaptation is an important topic that will be discussed in detail below. Per above, specification

of the adaptive transmitter requires determining the signal set to employ for each potential

estimate; simplified to the N = 1 case, this requires finding M̃(h),∀h, where M̃(h) is the

number of signals in the QAM signal set employed when |X̂(kTs − τ1)| = h. Since we want

to maintain Pb for each h, M̃(h) is chosen such that:

M̃(h) = max{M : sup
ρmin≤ρ≤1

P̃M

(
Es

N0

, h, ρ

)
≤ Pb}, (2)

where P̃M(Es

N0
, h, ρ) is defined as the bit error probability of the M -QAM signal set at average

received SNR Es

N0
when RX(τ1) = ρ and |X̂(kTs − τ1)| = h. Assume that optimal sym-

bol detection given the current channel fading amplitude is employed on the samples of the
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matched filter output at the receiver. An approximation to the bit error rate(BER) of M -QAM

modulations is given by [26]:

PM

(
y2 Es

N0

)
≈ 0.2 exp

(
− 3

4(M − 1)

Es

N0

y2

)
, (3)

which will be employed for all M here. If errors in channel estimation at the receiver are

considered, the right side of (3) will increase, of course, but it will often fit into the same

functional form [32], which is convenient, since the same optimization will apply. Using (3)

yields [17]:

P̃M

(
Es

N0

, h, ρ

)
= E

[
PM

(
Y 2 Es

N0

) ∣∣∣|X̂(kTs − τ1)| = h

]

≈





0.2 exp

2
4− h2ρ2

2(1−ρ2)

0
@1− 1

1+3
2

Es
N0

(1−ρ2)
(M−1)

1
A
3
5

1+ 3
2

Es
N0

(1−ρ2)
(M−1)

ρ < 1

0.2 exp
(
−3

4
Es

N0

h2

(M−1)

)
ρ = 1

(4)

where the second line is obtained from [33, 6.614.3].

From (2), (4) must be maximized over ρ ∈ [ρmin, 1]. Per [17], this maximization is easily

performed, as follows. Define

ρ̃ =





0 h ≥ √
2√(

1 + 2(M−1)
3

N0

Es

)
(2−h2)

2
0 ≤ h ≤ √

2

The worst case ρ is then given by

ρ∗ =





ρmin ρ̃ ≤ ρmin

ρ̃ ρmin < ρ̃ < 1
1 1 ≤ ρ̃

. (5)

The signal set is specified using (4) and (5) in M̃(h) = max{M : P̃M

(
Es

N0
, h, ρ∗

)
≤ Pb}. Note

that, since M̃(h) is nondecreasing in h, the adaptive scheme can be specified by finding the val-

ues hm,m = 2, 4, 16, 64, where hm is the threshold above which m-QAM can be successfully

employed.
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The discrete nature of the set of rates for any finite collection of signal sets hurts the per-

formance of the system. In particular, when m-QAM is employed, h will fall in the region

hm < h < h2m, and thus bit error performance will be better than anticipated. Although

it is tempting to view this positively, this is really a negative feature, since, in reality, data

rate has been lost. Stated differently, an optimal adaptive system under a given bit error con-

straint should meet that constraint with equality. Although the proposed approach is not op-

timal, meeting the constraint with equality through the following technique improves the data

rate while still meeting the bit error constraint. Rather than employing the energy adaptation

method of [26] to solve this problem, we instead employ a method analogous to the power-

pruning of [34]. The advantage of this method is that, with very little loss of optimality, it is

easily extended to coded modulation structures, where the overall optimization problem of [26]

is not easily framed when channel prediction is not perfect [17]. Once a signal set has been

chosen, the system is essentially a fixed rate system; thus, the goal changes from maximizing

average rate, to attempting to allow communication at this fixed rate with the least amount of

power. Thus, after the signal set is chosen, (4) and (5) are used to decide the minimum energy

required to maintain Pb given the channel estimate h, and this energy is employed rather than

the average energy. Any excess energy is put into a “bank” on which successive symbols can

draw.

2.4.3 Numerical Results/Analysis

Per Section 2.1, systems with a significant amount of decoding complexity and allowable la-

tency only have the potential for a small amount of improvement when CSI is provided to the

transmitter, and uncoded systems, which have the least decoder complexity and essentially no

latency, benefit the most when transmitter CSI is available. In particular, uncoded systems

operating over frequency-nonselective Rayleigh fading channels perform very poorly, because

they do not achieve diversity. Because of this, coherently decoded quadrature phase-shift key-

ing (QPSK) with only receiver CSI requires an SNR of 25 dB to achieve a bit error rate of

10−3 on a frequency-nonselective Rayleigh fading channel [18, pg. 829], whereas the same
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technique requires an SNR of well under 10 dB to achieve the same bit error rate on an AWGN

channel. The reason for this discrepancy is that the QPSK system operating over the Rayleigh

fading channel is extremely susceptible to deep signal fades. Although the occurrence of such

is relatively uncommon, the error rate during a bad fade can be orders of magnitude above that

occurring when the average received SNR is observed, and thus these bad fades dominate the

error rate.

In adaptive signaling, CSI is available at the transmitter. Arguably, the greatest utility

of such information is that signaling can be avoided when bad fades are present. Figure 4

demonstrate the spectral efficiencies of several designs with perfect CSIT in Rayleigh fading

channels[26, 35]. The target BER is 10−3, and the constellation set includes 0-QAM, BPSK,

QPSK, 16-QAM, 64-QAM and 256-QAM. The variable power is continuous. As shown in

the figure, using discrete constellations loses little spectral efficiency, and power adaptation

provides almost 1 bit date rate gain when discrete constellations are used. In particular, average

rates in excess of 2 bits per symbol are possible for average received SNRs under 13 dB; even

the simple scheme that applies constant power and truncates the continuous constellation to

the closest MQAM provides 2 bits per symbol under 15 dB. Thus, there is a significant gain in

system performance when transmitter CSI is available in uncoded systems.

However, as pointed out in [36, 17], the assumption of perfect CSI is dangerous when

channel estimates are outdated and/or noisy, as would be the case with realistic delay in the

feedback path from the receiver to the transmitter. In particular, the conditional density function

given in (1) becomes Rician (rather than a delta function), and, hence, the conditional channel

acts like a fading channel. For example, as displayed in Figure 5, adaptive signaling assuming

perfect channel estimation can miss its target bit error rate by two orders of magnitude - even

for the relatively high correlation coefficients of ρ = 0.96. In this case, bad predictions, which

are relatively uncommon, lead to instantaneous error rates that are orders of magnitude above

the target and thus dominate system performance.

Per Section 2.3, a common method of countering imperfect CSIT effect on BER is to add

energy margin during the energy adaptation process. Figure 6 compares the average data rates
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of this energy margin scheme and the design method of (1). As indicated in the figure, there

are still significant gains in adaptive signaling versus non-adaptive signaling when CSIT is not

perfect - even when the correlation coefficient drops as low as ρ = 0.85. In Figure 7, the

average rates versus SNR are plotted for a number of values of ρmin with the design BER 10−3

. The close correspondence of the ρmin = 1.0 curve to the results in [26] suggests that the

flexible power allocation is effective. We conclude from this section that adaptive signaling is

particularly effective for simple, low-latency systems such as adaptive uncoded QAM systems

[36, 17].

3 Adaptive Modulation in Beamformed Multiple-antenna Sys-
tems

The union of wireless and wired data systems continues to drive wireless communication sys-

tems to support even higher data rates. For example, next generation WLAN will support up

to 600Mbps in over-the-air data rate[14]. Due to stringent power and spectrum constraints, de-

signing high-speed wireless systems with guaranteed quality-of-service(QoS) forms a tremen-

dous challenge. An emerging technology, multiple-input multiple-output(MIMO), has been

developed to meet this challenge[37, 38]. In MIMO communication systems, multiple anten-

nas are deployed at the transmitter and receiver to reap the degree-of-freedom and diversity

gain in wireless channels with rich scattering.

Single-user MIMO communications has been extensively studied and continues to be an

active research area in communication theory. Without an increase of transmit power and

bandwidth, the MIMO system with m transmit antennas and n receive antennas can achieve

ergodic capacity approximately min(m,n) times that of the single-antenna system. In gen-

eral, CSI is assumed to be available at the receiver, but inaccessible at the transmitter due to

the time-varying and asymmetric nature of wireless channels. In this case, the optimal power

allocation is equally splitting among the transmit spatial substreams. With CSI available at

the transmitter, the capacity-achieving strategy is to decompose the channel into parallel non-

interfering subchannels with singular value decomposition(SVD) and waterfill the power over
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these subchannels(called channel eigenmodes)[37]. Figure 2 shows the k-th eigenmode: the

data signal is transmitted along the k-th right singular vector, and at the receiver the channel

output vector is combined with the k-th left singular vector of the channel matrix. Mathemat-

ically, this is a process of coordinate transformations in the transmit and receive signal space;

in the perspective of channel modeling, this is just to beamform the signal towards the scat-

ters. The capacity improvement over the open-loop case is substantial. Moreover, the diagonal

equivalent channel can significantly reduce the receiver complexity.

In reality, the transmitter cannot have perfect CSI due to a number of reasons, among which

are the constantly varying nature of wireless channels, channel estimation error, quantization

error, and limited bandwidth of the feedback channel etc. The channel capacity with partial CSI

at the transmitter and perfect CSI at the receiver is well documented. Research has focused on

four mathematic models of transmit CSI: zero-mean spatially white(ZMSW), channel mean

information(CMI), channel covariance information(CCI)[39] and CSI with finite rate feedback

[40].

CMI models the case that transmitter has an imperfect instantaneous measurement of the

channel. The major results of the channel capacity of the CMI model are briefly introduced in

the following. For multiple-input single-output(MISO) systems, the principal eigenvector of

the optimal input covariance is along the channel mean vector and the eigenvalues correspond-

ing to other eigenvectors are equal[41]. For MIMO systems, it does not lose any optimality

to transmit along the eigenvectors of the channel matrix[42]. For both MIMO and MISO sys-

tems, there is no closed-form optimal power allocation. Beamforming is a method to transmit

signals over the principal eigenmode. Under some conditions, beamforming can achieve the

channel capacity. The optimality condition of beamforming is given in [43] and [44] for MISO

and MIMO systems, respectively. In short, beamforming becomes optimal when the power

decreases, or the feedback quality improves in MISO systems.

Linear precoded spatial multiplexing has been proposed for the transmitter with full CSI

[45, 46, 47, 48, 49, 50], CMI[41, 51, 52], CCI[53, 54, 55], both CMI and CCI [56], or

bandwidth-limited feedback from the receiver[40, 57]. The optimization objectives to choose
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the precoder include a wide array of criteria, for example, minimizing the weighted mean

squared error(MSE) [53], [48], maximizing the received minimum Euclidean distance[50],

minimizing the BER[58] and so on. Based on the powerful convex optimization theory and

majorization theory, a unified framework is proposed in [49] for the joint linear transceiver

design with full CSI at both sides. This framework includes all the design criteria by cate-

gorizing them into two families: Schur-concave and Schur-convex objective functions. For

Schur-concave functions, eigen-decomposing the channel is optimal; for Schur-convex func-

tions, diagonalizing the channel after rotating the transmit vector is the optimal solution. In

[58], the converse formulation of the problem is studied: minimizing the transmit power given

the QoS constraint on each substream. Not surprisingly, the optimal structure is eigenbeam-

forming(up to a unitary rotation in some cases). In the CMI case, grafting orthogonal space-

time block coding (OSTBC) with the beamforming is a viable approach[51, 52, 56](see an

example in Figure 3). The maximum likelihood (ML) decoding in this case is simplified to

linear operations. Note all the above designs assume the constellations are fixed.

In multiple antenna systems with full CSI at the transmitter, it is proven in [59] that

the classic capacity-achieving waterfilling and the gap approximation method on each eigen-

mode are virtually optimal in terms of minimizing the transmit power. Adaptive modulation

with the channel mean feedback has been explored in the transceiver based on OSTBC and

eigenbeamforming[60, 61]. Although the Alamouti code has been shown to achieve the full

capacity of a 2 × 1 system, simple full rate OSTBCs have not yet been developed for the

large number of transmit antennas. A bit and power loading scheme for eigen-beamforming

with partial CSI is proposed in [62]. It assumes the maximum likelihood detector, which dra-

matically increases the complexity of the receiver. A robust adaptive modulation scheme is

presented for eigenbeamforming taking into account the channel estimation error and the CSI

delay in [63].

Partial CSIT resulting from finite rate feedback has attracted considerable attention lately

due to its underlying practical constraints imposed by limited feedback channel capacity in

transmitting forward channel measurements. When the feedback channel is assumed error-free
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with limited capacity, there are in general three approaches in exploiting partial CSIT at the

transmitter side, namely, channel vector quantization, scalar quantization and quantized signal

adaptation schemes [40]. The channel quantization scheme is to perform vector quantization

of the measurements directly at the receiver end using the traditional MSE distortion metric,

then optimize the transmission signaling at the transmitter conditioned directly on the quantizer

output[64].

The quantized signal adaptation approach attracts more attention than the former two ap-

proaches. As described in [65], it is a hybrid beamforming and power control design framework

that can achieve the optimal link capacity under the feedback-link capacity constraint. In this

approach, CSIR is assumed to be perfectly estimated at the receiver, and the CSIR space is

partitioned into L = 2Rfb non-overlapping regions, where Rfb is the finite rate constraint for

the feedback channel. Given the perfect CSIR, the associated index q ∈ {1, · · · , L} of the

CSIR region is located and fed back to the transmitter. At the transmitter, there is a table of

transmit covariance matrices Qi, i = 1, · · · , L, each of which is equivalent to performing both

power control and beamforming after eigen-decomposition. Upon receiving the index q, the

transmitter sends a Gaussian codeword matrix with the covariance matrix Qq. The objective

function becomes throughput maximization by jointly designing CSIR space partition and the

selection of L covariance matrices under a power constraint Tr(Qi) ≤ P0, where P0 is the max-

imum average total transmission power. A more general case with possibly imperfect CSIR is

considered in [66].

The precedent optimization problems can in general be solved using an iterative Lloyd’s

algorithm with modified distortion measure [65], which unfortunately cannot yield analytical

solutions. Recently, under the same framework in using partial CSIT as described above, the

quantization problem associated with maximizing received SNR or minimizing outage prob-

ability with finite rate feedback is successfully formulated as quantization on the Grassmann

manifold [57, 67]. The asymptotically equivalent lower and upper bounds for the rate-distortion

tradeoff of quantization on the Grassmann manifold is lately obtained in [68]. Asymptotic ca-

pacity loss versus the number of feedback bits is also investigated in [69, 70, 71].
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The major motivation of finite rate feedback is to avoid sending a larger number of fading

parameters back to the transmitter[40]. When finite-rate feedback on transmitting CSIT is con-

sidered, it is quite common to adopt a block fading channel model. This model is more appro-

priate for slowly varying MIMO channels with a large number of antenna elements. However,

for many wireless applications involving relatively fast varying fading variables, it is more suit-

able to adopt MIMO channel models with temporally correlated fading variables and delayed

feedback. In reality, the number of antenna is relatively small; thus, it is not a huge burden on

the feedback channel to carry full CSI. For instance, at most 4 antenna elements are equipped

at either end of the wireless link in IEEE 802.11n and full CSI (may be compressed) is fed

back[14]. In the sequel, we will focus on the design making use of delayed, yet full CSIT.

Notation: Underlined lower-case letters are vectors, boldface upper-case letters are matri-

ces; [A]ij means the (i, j)th element of the matrix A; (·)H and (·)T denote the Hermitian and

transpose of a matrix or vector, respectively; diag(a) denotes a diagonal matrix with the vector

a on the diagonal; EX(·) represents the expectation with respect to the random variable X; I is

the identity matrix; all vectors are column vectors.

3.1 System Model

An uncoded frequency non-selective MIMO system with m transmit antennas and n receive

antennas(n ≥ m) is considered in this paper. Hence , the standard time-varying baseband

model

y(t) = H(t)x(t) + n(t) (6)

will be employed, where y(t) is the n × 1 received vector, x(t) is the m × 1 transmitted

vector, H(t) is the n×m channel matrix and n(t) is the noise vector with each entry a proper

complex Gaussian random process. The elements of H(t) will be assumed to be zero-mean

stationary complex Gaussian random processes, and, because the array elements are assumed

to be sufficiently separated, it will be assumed that these processes are independent of one

another. Assume the channel is constant over a symbol interval, and define H , H(t0) to be
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the true channel matrix for the symbol at the time t0 of data transmission and H′ , H(to − τ)

to be the outdated channel information that the transmitter utilizes to do eigenbeamforming

and adaptive modulation. Then, the continuous-time model gives rise to a discrete-time model

for the symbol of interest:

y = Hx + n, (7)

where the time index has been suppressed, and the entries of H will be assumed to have unit

variance. Let ρ(τ) = E{[H]ij[H
′]ij} for all i and j. Then, recalling [H]ij and [H′]ij are jointly

Gaussian,

H = ρ(τ)H′ + Σ, (8)

where entries of Σ are independently identically distributed(i.i.d.) zero-mean proper complex

Gaussian random variables with variance (1 − ρ2(τ)). The delay τ will be suppressed for the

rest of the paper.

The SVD of the outdated channel matrix can be written as:

H′ = U′D′V′H ,

where U′ and V′ are unitary matrices containing the left and right singular vectors of H′,

respectively, and D′ is a diagonal matrix containing the singular values of H′ in descending

order. Let x and s represent the eigenbeamformed and the data-bearing signal, respectively.

Then,

x = V′Es, (9)

where E = diag(
√

E1,
√

E2, . . . ,
√

Em), and Ei is the average energy on the i-th eigenmode.

Hence the received signal y is

y = HV′Es + n,

where entries of n are i.i.d. zero-mean complex Gaussian random variables with variance N0.
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At the receiver, ML (e.g. sphere decoding[72]) or other suboptimal receivers (e.g. MMSE

with successive interference cancellation) can be utilized for signal detection as in standard

spatially multiplexing MIMO systems since the equivalent channel matrix HV′ is known to

the receiver. In order to reduce the complexity burden on the receiver, however, we retain

the original simple receiver of the perfect CSI case, since the proposed scheme is intended

for the situation where the correlation between the outdated CSI and the current CSI is fairly

high. Recall that the major motivation for beamforming is its low complexity. Hence, the left

singular vectors U′H are used to combine the received vector:

z = U′Hy

= U′HHV′Es + U′Hn

= GEs + w, (10)

where G is defined as U′HHV′, and since U′H is unitary, the noise vector w has the same

statistical properties as n. The MIMO channel is decomposed into n parallel non-interfering

channels if the transmitter knows the true channel matrix H(i.e. H = H′), and detection can

be done separately on different eigenmodes. However, perfect CSI is not available at the trans-

mitter. The treatment of different eigenmodes as scalar channels will allow the preservation of

the small complexity that is one of the main motivations for eigenbeamforming. Hence, scalar

detection on each element of z will be assumed throughout this paper.

The overall strategy is the same as in the single antenna case: the transmitter predicts the er-

ror performance(not the channel, which would be suboptimal) given the outdated CSI and max-

imizes the channel throughput based on this information. Therefore, it is first necessary to char-

acterize the error performance given the outdated CSI at the transmitter: EH|H′ [BER(SINRi)|H′], i =

1, . . . , m, where SINRi stands for the signal to interference and noise ratio on the i-th eigen-

mode. Note that H′ and its eigen-decomposition are known to the transmitter. Hence, for the

sake of neatness, the conditioning on such is dropped for the rest of the paper.
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3.2 BER Approximation

First consider the statistics of the matrix G. Define gT
i

to be the i-th row of the matrix G, and

gij , [G]ij . Clearly, g
i

is a proper complex Gaussian random vector. Also,

G , U′HHV′

= ρU′HH′V′ + U′HΣV′

= ρD′ + Ξ,

where Ξ has the same statistical properties as Σ, since U′ and V′ are unitary. Let {λ′i, i =

1, . . . , m} be the singular values of H′ in decreasing order, and ξT

i
be the i-th row of the matrix

Ξ; then,

gT

i
= [0, . . . , λ′i, . . . , 0]ρ + ξT

i
,

and the received signal on the i-th eigenmode is

zi = gii

√
Eisi︸ ︷︷ ︸

signal

+
∑

j 6=i

gij

√
Ejsj

︸ ︷︷ ︸
interference

+wi, i = 1, . . . , m, (11)

where gii is a complex Gaussian random variable, and each gij, i 6= j, is a zero mean com-

plex Gaussian random variable given the outdated channel matrix. Hence, the interference is

Gaussian given the transmitted signal, and the average probability of error for independent data

streams can be obtained by averaging an error function over all potential transmitted vectors.

Such is readily accomplished for small n. If the eigenmode number m is large, the interfer-

ence can be considered complex Gaussian according to the central limit theorem(CLT). Thus,

assuming uncorrelated unit-variance si and sj, i 6= j,

SINRi =
YiEi

(1− ρ2)(E − Ei) + N0

where E is the total average energy on all of the eigenmodes per channel use, and Yi , |gii|2.

The bit error rate(BER) for square M -ary quadrature amplitude modulation(M -QAM) with

Gray coding can be approximated by [26]

BER = 0.2 exp

(
− 1.5

M − 1
SINR

)
. (12)
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Therefore, the expected BER of the i-th eigenmode can be calculated as follows,

BERi = 0.2EYi

{
exp

(
− 1.5

Mi − 1
SINRi

)}
,

Calculating the expectation yields

BERi =
0.2 exp

[
− ρ2λ′i

2

2(1−ρ2)
(1− 1

Ai
)
]

Ai

, i = 1, . . . , m, (13)

where

Ai = 1 +
3Ei(1− ρ2)

(Mi − 1)[(1− ρ2)(E − Ei) + N0]
,

i = 1, . . . , m. (14)

If ρ = 1, there is no interference from other eigenmodes and Yi = λ′2i with probability 1.

In this case, the approximate expected BER is

BERi = 0.2 exp

(
− 1.5

Mi − 1

λ′2i Ei

N0

)
. (15)

3.3 Adaptive MQAM

It is shown in [42] that, without temporal power loading, waterfilling over the outdated channel

is very close to optimal in terms of channel capacity when ρ = 0.9. In the design here, temporal

power adaption is just “power pruning” motivated by [17], i.e. extra power in one time slot is

allocated to the next time slot, and the rate for the specific channel matrix is maximized with

the given average power at the moment.

The optimization problem is expressed as:

maximize
∑

i

log2 Mi (16)

subject to BERi ≤ Pb, and
∑

i

Ei ≤ E

where Pb is the prescribed BER, and Mi is the size of the constellation on the i-th eigenmode.

Notice that spatial power and bit loading in eigenbeamforming transmission with perfect CSI
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are very similar to that in multi-carrier communication systems; hence, optimal solutions exist

when the transmitter has perfect CSI. Manipulating (15) yields

Mi = 1− 1.5λ′2i Ei

ln(5Pb)N0

, i = 1, . . . , m (17)

Assuming the energy and constellation size are continuous, the optimal spatial power load-

ing is

E∗
i =

(
ν − −2 ln(5Pb)

3

N0

λ′2i

)+

, i = 1, . . . , m (18)

where ν is a constant that satisfies
∑

E∗
i = E and (x)+ means max(0, x). Note that “wa-

terfilling” over eigenmodes throughout this paper means (18) if not in the information theory

context. Substituting the optimal energy value in (17) yields the optimal continuous constella-

tion size, which is then rounded to a discrete constellation size. Note that this rounding scheme

is not the optimal discrete bit loading solution. If the constellation size on one eigenmode is

rounded to 0, the energy on it will be put on other eigenmodes. Per above, “power pruning” as

described in [17] is then applied; the extra energy from this channel use will be added to that

for the next channel use. The algorithm for the case of perfect feedback can be summarized as

following steps:

1. Allocate the energy(sum of the energy from last time and the average energy) according

to (18).

2. Calculate continuous constellation sizes on all eigenmodes according to (17).

3. Reallocate the energy from the higher-ordered eigenmodes for which the rounded con-

stellation is of size zero to the remaining lower-ordered eigenmodes equally.

4. Calculate continuous constellation sizes again on the remaining eigenmodes with the

new power loading according to (17).

5. Round the continuous constellation sizes to the nearest discrete constellation sizes and

obtain the minimum energy values to maintain the prescribed BER with the selected

discrete constellation sizes.
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6. Save the extra energy for the next use of the channel.

Due to the complicated relationship between power, BER and M , the optimal spatial power

and bit loading in the delayed feedback case is very difficult to derive. Existing algorithms de-

rived for different frameworks for the problem either just allocate equal power on all active

eigenmodes[63], or use a high-complexity brute-force searching method to do joint power and

bit loading [62]. Here, initial spatial power loading is “waterfilling” over the active eigen-

modes assuming the CSI at the transmitter is perfect. Next, with knowledge of the power on

an eigenmode, one can select the maximum constellation size that keeps the BER below the

prescribed value. Because Mi cannot be written as an explicit function of Ei, this has to be

done by off-line numerical search and stored in a lookup table. The constellation size of the

first eigenmode is determined first. Then the minimum energy to support the required BER is

obtained numerically. Extra energy is reallocated to the next eigenmode. This process contin-

ues until power and bit loading is done on all eigenmodes. Because numerical results show that

it works well, (13) is used regardless of the number of eigenmodes. Similar to the perfect CSI

feedback case, if 0-QAM is assigned to an eigenmode, no power is transmitted and the total

power will be waterfilled to other lower-ordered eigenmodes, still according to the outdated

CSI. The extra energy from this channel use will be used for the next channel use. The initial

number of active eigenmodes is m. After the above procedure is done, the total bit number

is recorded and the weakest eigenmode among the active eigenmodes is removed from the ac-

tive eigenmode set. Then this procedure is repeated until only one eigenmode is active. The

number of active eigenmodes that maximize the total bit number, as well as the corresponding

power and bit loading, is chosen. The algorithm contains the following steps:

1. Select the active eigenmode number N = m(m is the maximum number of eigenmodes).

2. Waterfill the total energy E (the average energy plus extra energy from the last time of

channel use) over these N eigenmodes.

3. Use the BER approximation formula (13) to load bits on the l-th eigenmode(initial value

l = 1) so that the BER is below the prescribed value.
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4. Calculate the minimum energy to keep the required BER with the selected constellation

size.

5. if l = N , go to Step 6; otherwise l = l + 1, add the extra energy from Step 4 to the l-th

eigenmode and go to Step 3.

6. Subtract the extra power on the last eigenmode from the total power E, and repeat Step

2-5 to do bit loading again.

7. Add the extra power from the first and second round of bit loading. This extra energy

will be allocated to the next channel use.

8. Sum the bit number on all eigenmodes, and store this value.

9. N = N − 1. If N = 0, go to Step 10; Otherwise, go to Step 2.

10. Select the number of eigenmodes that supports the maximum number of bits. The corre-

sponding bit and power loading is also selected.

Note that Step 6 is used to consider the cross interference between the eigenmodes.

3.4 Numerical results

A 4×4 MIMO system is used in the simulation. In the simulation, the variance of the complex

AWGN noise is normalized to 1, and hence SNR manipulation is done via the average trans-

mitted power setting. The proposed scheme will be compared with two schemes. One is the

“delay disregarding” scheme which assumes the transmitter CSI is perfect. Thus, the power

and bit loading are done exactly like in the ρ = 1 case except that power pruning is not done.

The “energy margin” scheme also employs design equations with ρ = 1, but now a link margin

is employed to compensate for the imperfect CSI. In other words, the ρ = 1 equations are used

with a more conservative energy substituted until the BER requirement is met.

First, consider the accuracy of the BER approximation formula as shown in Figure 8. The

BER depends on the high-dimension H, so it is impossible to verify every case. Thus, one
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specific realization of the outdated channel matrix is randomly generated and fixed during the

simulation. The constellations are 16-QAM, QPSK, PSK and PSK on eigenmode 1, 2, 3, 4, re-

spectively, and the corresponding transmit SNRs are 14.7dB, 13.0dB, 11.8dB and 11.8dB. For

other figures, the average total transmit SNR is 17.8dB, and the available constellation sets for

adaptive modulation are square M -QAM with M ∈ {0, 2, 4, 16, 64, 256}. Figure 9 indicates

that the proposed scheme meets the prescribed BER 10−3 while the delay disregarding scheme

greatly misses the target. It is shown in Figure 11 that the proposed scheme provides higher

data rate than the “energy margin” scheme with similar error performance. Not surprisingly,

the data rate gain is even higher than that in [17].

4 Conclusions

Wireless communications systems form a critical part of the communications infrastructure,

particularly in disaster situations, but multipath fading makes communication over wireless

channels challenging. One promising method of improving performance over such channels

is to employ channel state information at the transmitter to tune the transmitted signal to the

channel state. Such an approach has not only been widely studied in academic circles but also

has recently found penetration into numerous standards. However, the channel state informa-

tion available at the transmitter is inherently outdated and noisy, which makes system design

challenging. In this paper, we have reviewed and extended an approach to this problem where

statistical information about the current channel state based on the available measurements

is explicitly exploited. For single-antenna systems, employing such an approach rather than

simply relying on extra link margin to compensate for such has been shown to result in signif-

icant gains. These results were then extended to the multiple-antenna case, where the loss due

to inaccuracy in the channel measurements is higher due to the resulting cross-talk between

transmission modes. However, the available gains are also higher, and an algorithm has been

presented to efficiently achieve such. Numerical results support this analytic line of thought.

There is considerable interest to extend the line of research of this paper to the multiple-

antenna broadcast case, where the gains of transmitter CSI are enormous even from a Shannon
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capacity point of view. In particular, unlike the point-to-point MIMO channel, transmitter CSI

in the broadcast case provides an effective increase in the degrees of freedom, and thus it is of

interest to consider both how these degrees of freedom decay as CSI becomes outdated and/or

noisy and how to efficiently signal in such a scenario.
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Figure 5: Simulated BER of adaptive uncoded QAM design schemes versus ρmin at average
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Figure 9: Comparison of the two schemes. The top four curves are from the delay-disregarding
scheme. The four curves in the bottom come from the proposed scheme. Due to the small
number of bits transmitted on the higher-ordered eigenmodes for small ρ values, BERs of
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BER target 10−3, while BERs in the proposed scheme are below 10−3. Also, note that the 4th
eigenmode is never used in our scheme when ρ < 1.
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Figure 10: Date rates on different eigenmodes. Solid lines are the proposed scheme, and dashed
lines are the “energy margin” scheme. The 4th eigenmode carries very little throughput for
either scheme, even when the ρ is fairly large. The decline in the date rate on the first eigenmode
is because power is poured to other eigenmodes when the CSI gets better. It is observed that
using only the strongest eigenmode(beamforming) gives negligible rate loss when ρ < 0.9.
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Figure 11: Comparison of overall date rates of different schemes. This figure clearly shows
that the proposed scheme is superior when ρ < 0.95. The rate of the proposed scheme is almost
4 bits/s/Hz more than the energy margin scheme, and 1 bit/s/Hz more than the scheme without
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