1. X is a random variable with pdf $f_X(x)$. Let $B = \{a \leq X \leq b\}$ and let $Y = g(X)$ for a given function g. Write an expression for $E[Y|B]$.

2. X_1, X_2 and X_3 are independent identically distributed Gaussian random variables each with mean zero and variance 1. Let

$$U = X_1 + 2X_2$$
$$V = 2X_1 - X_2 + X_3 + 3$$

Find the joint density function of U and V.

3. Let X_1, X_2 and X_3 be three independent Gaussian random variables with $E[X_1] = E[X_2] = E[X_3] = 0$ and $\text{var}(X_1) = 1$, $\text{var}(X_2) = 2$, $\text{var}(X_3) = 1$. Let

$$Y_1 = X_1 + X_2 - X_3 + 1$$
$$Y_2 = X_1 - X_2 - 1$$

Find the joint density function of Y_1 and Y_2.

4. Let X be a Cauchy random variable with density function $f_X(x) = \frac{1}{\pi(1+x^2)}$.

(a) Show that the characteristic function of X is given by $\phi_X(v) = e^{-|v|}$.

(b) Let $X_1, X_2, X_3, ...$ be a sequence of independent and identically distributed random variables all of which are identical to X. Let $Y_n = \frac{1}{n} \sum_{i=1}^{n} X_i$. Find the density function and the characteristic function of Y_n. How do you explain the behavior of Y_n in light of the weak law of large numbers?

5. Uncorrelatedness of two r.v.’s X and Y does not imply independence of X and Y. Verify this statement for the two examples given below by checking for (i) independence and (ii) uncorrelatedness.

(a) $f_X(x)$ is symmetrical about the origin and $Y = X^2$.

(b) $f_{XY}(x, y) = \begin{cases} 4|x|y & 0 \leq y \leq |x| \leq 1 \\ 0 & \text{elsewhere} \end{cases}$

6. Let X and Y be two independent, identically distributed random variables with probabilities $P(X = k) = P(Y = k) = (1 - p)p^k$ for $k = 0, 1, 2, \cdots$, where $0 < p < 1$. Let $Z = X - Y$.

(a) Calculate the characteristic function of X in closed form (not in infinite sum).

(b) Compute the characteristic function of Z.

1
(c) Find the mean and variance of \(X \) by using the characteristic function of \(X \).
(d) Find the mean and variance of \(Z \).

7. \(X_1, X_2, \ldots, X_n \) are \(n \) independent random variables and \(a_1, a_2, \ldots, a_n \) are real constants.
 Let \(Z = \sum_{i=1}^{n} a_i X_i \). Find \(\Phi_Z(w) \) and \(f_Z(z) \) if

 (a) \(X_i \) is a Gaussian random variable with mean \(m_i \) and variance \(\sigma_i^2 \) for \(i = 1, 2, \ldots, n \).
 (b) \(X_i \) is a Poisson random variable with mean \(\lambda_i \) for \(i = 1, 2, \ldots, n \) and \(a_i = 1 \) for all \(i \).

8. \((X_1, X_2, X_3, \ldots) \) are independent random variables such that for every \(i \), \(X_i = 0 \) or 1 and
 \[P(X_i = 1) = p, \quad P(X_i = 0) = 1 - p \]
 Let
 \[Z = \frac{1}{n} \sum_{k=1}^{n} X_k. \]

 (a) Find \(E[Z] \) and \(\text{var}(Z) \).
 (b) Prove that for any \(\epsilon > 0 \)
 \[P(|Z - p| \geq \epsilon) \leq \frac{p(1-p)}{n\epsilon^2} \]
 What conclusion can you draw from the above inequality?
 (c) Let \(N \) be a Poisson random variable with mean \(\lambda \). Assume \(N \) is independent of \(X_1, X_2, X_3, \ldots \), and let \(Y = \sum_{k=0}^{N} X_k \). Find \(E[Y] \).