
A Systematic Approach to Model-Guided Empirical

Search for Memory Hierarchy Optimization⋆

Chun Chen, Jacqueline Chame, Mary Hall, and Kristina Lerman

University of Southern California/Information Sciences Institute
4676 Admiralty Way, Suite 1001, Marina del Rey, CA 90292

{chunchen,jchame,mhall,lerman}@isi.edu

Abstract. The goal of this work is a systematic approach to compiler optimization
for simultaneously optimizing across multiple levels of the memory hierarchy. Our
approach combines compiler models and heuristics with guided empirical search to
take advantage of their complementary strengths. The models and heuristics limit
the search to a small number of candidate implementations, and the empirical results
provide accurate feedback information to the compiler. In previous work, we propose a
compiler algorithm for deriving a set of parameterized solutions, followed by a model-
guided empirical search to determine the best integer parameter values and select
the best overall solution. This paper focuses on formalizing the process of deriving
parameter values, which is a multi-variable optimization problem, and considers the
role of AI search techniques in deriving a systematic framework for the search.

1 Introduction

Since the development of the earliest optimizing compilers, it has been well understood that
compiler optimization is a challenging problem with a variety of tradeoffs. As architectures
and applications become increasingly complex, statically predicting the impact of individual
compiler optimizations and the aggregate impact of a collection of optimizations is becoming
increasingly difficult.

Currently, optimization of high-end computing applications is done manually in an ad-
hoc manner. A recent strategy to address this complexity and improve performance employs
empirical optimization, to systematically evaluate a collection of automatically-generated
code variants and parameter values [8, 4]. Code variants, in this context, are alternative but
equivalent implementations of the same computation. For a particular variant, there may
additionally be optimization parameters such as unroll factors and tile sizes. Rather than
estimating performance through analysis, implementation variants are actually executed on

the target architecture with representative input data sets across different parameter values
so that performance can be measured and compared. However a recent paper [9] showed
that the model-driven approach on Matrix Multiply can yield comparable performance with
ATLAS [8], suggesting that the compiler-derived model may be able to limit the search
space.

In a previous paper, we demonstrated that combining the strengths of models with em-
pirical search can yield better performance than either ATLAS or hand-coded BLAS [2]. For
memory hierarchy optimization, finding a set of variants and parameters that result in high

⋆ This work has been supported by NSF grant ACI-0204040.



DO K = 1,N

DO J = 1,N
DO I = 1,N

C[I,J] += A[I,K]*B[K,J]

(a) Original Matrix Multiply

new P[TK,TJ]
new Q[TI,TK]
DO KK = 1,N,TK

DO JJ = 1,N,TJ
copy B[KK..KK+TK-1,JJ..JJ+TJ-1] to P

DO II = 1,N,TI
copy A[II..II+TI-1,KK..KK+TK-1] to Q

DO J = JJ,min(JJ+TJ-1,N),UJ
DO I = II,min(II+TI-1,N),UI

load C[I..I+UI-1,J..J+UJ-1] into registers

DO K = KK,min(KK+TK-1,N)
prefetch P’s

multiply Q’s and P’s to registers
store C[I..I+UI-1,J..J+UJ-1]

(b) Optimized Matrix Multiply

Fig. 1. Matrix Multiply

performance is difficult because of the complex tradeoffs among memory hierarchy levels.
In addition, the search space is difficult to model analytically since performance can vary
dramatically with problem size and optimization parameters. Empirical results can help the
compiler tune the accuracy of its models and select the best candidate implementations. A
purely empirical approach is not practical in general because the search space of possible
variants and their parameters is prohibitively large. A compiler’s understanding of the im-
pact of code transformations on performance can be used to limit the search space and rule
out the vast majority of inferior implementations.

This paper explores the parameter search in an effort to develop a systematic and gener-
alizable approach that goes beyond our memory hierarchy optimization strategy. Realizing
that many compiler optimizations require some sort of heuristic-based search, we consider
the suitability of AI search techniques. Although compiler researchers have begun to apply
elements of AI to their work [3, 6, 7], no principled methodology yet exists. We believe a
formal framework will enable compiler developers and application programmers to move
away from ad-hoc approaches toward a principled process of design.

The remainder of the paper is organized as follows. Section 2 illustrates the problem
of optimizing for multiple levels of the memory hierarchy and describes our framework.
Section 3 formalizes the search problem as a multi-variable optimization problem. Finally,
Section 4 concludes the paper.

2 Guided Empirical Search for the Memory Hierarchy

To achieve high application performance on today’s architectures with deep memory hierar-
chies, it is essential to consider the overall performance impact of individual optimizations.
In [2] we propose an approach for simultaneously optimizing across all levels of the mem-
ory hierarchy using a combination of compiler analysis, architecture models and a guided
empirical search for optimization parameters.

Before describing our approach, we illustrate the tradeoffs among memory hierarchy op-
timizations using matrix multiply as an example. Figures 1 (a) and (b) show the original
matrix multiply and a parameterized code variant derived by applying several optimizations
to the original version (loop interchanging, unrolling, tiling, data copying and data prefetch-
ing). Table 1 shows the performance of the optimized variant for four sets of optimization
parameters.



Set = {TI , TJ , TK , PP,K} Loads L1 misses L2 misses TLB misses Cycles
set1 = {1, 32, 64, 0} 4.20 B 142 M 21.6 M 0.231 M 10.2 B
set2 = {8, 256, 256, 0} 4.08 B 319 M 7.19 M 4.42 M 9.70 B
set3 = {16, 512, 128, 0} 4.11 B 182 M 8.01 M 2.78 M 9.47 B
set4 = {16, 512, 128, 4} 5.12 B 188 M 8.04 M 2.78 M 9.18 B

Table 1. Performance variation with optimization parameter values

Fig. 2. Optimization framework

Each row in Table 1 corresponds to a set of integer parameter values {TI , TJ , TK , PP,K}1

where TI , TJ , TK are the tile sizes of loops I, J and K and PP,K is the prefetch distance
of array P in loop K. For each set of parameters, the optimized code variant was executed
on an SGI Octane R10000 and the performance data was obtained using the performance
monitoring interface PAPI [1]. The same matrix size, larger than the second-level cache, was
used in all experiments.

The first parameter set achieves the lowest number of L1 misses by tiling loops J and
K with sizes 32 and 64 (TI = 1 indicates that loop I is not tiled, and PP,K = 0 indicates
that no prefetches are inserted for array P). The tile sizes in set2 result in lower L2 misses
but higher L1 misses than those of set1. set4 achieves the best performance by balancing
locality between the L1 and L2 caches, even though it has the highest number of loads and
none of the best L1 or L2 misses. In addition, prefetching with distance 4 achieves an extra
3% reduction in total cycles with respect to set3.

This example illustrates that achieving the best performance requires exploiting reuse in
all levels of the memory hierarchy, trading off best performance at any particular level for
locality at all levels.

The remainder of this section presents a summary of our framework, which is organized
into two main phases (Figure 2). In the first phase the compiler generates a set of parame-
terized code variants. The second phase is a search among parameter values for each code
variant, guided by models and heuristics.

1 For simplicity, the unroll factors of this optimized variant are the same for all sets of parameters
and are not shown in the table.



Transformations Definition Goal Variants Parameters

Loop
permutation

Change the loop
order

Enable U&J and
Tiling + Reduce
TLB misses

Different loop
orders

-

Unroll and
Jam

Unroll outer
loops and fuse
inner loops

Reuse in registers - Unroll
factors

Scalar
replacement

Replace array
accesses with
scalar variables

Tiling
Divide iteration
space into tiles

Reuse in cache - Tile sizes

Data
copying
(w/tiling)

Copy subarray
into contiguous
memory space

Avoid conflict
misses + Avoid
TLB thrashing

Yes/no on
specific data
structures

-

Prefetching
Prefetch data
into cache before
actual references

Hide memory
latency

- Prefetch
distances

Table 2. Transformation variants and parameters

Phase 1: Generate Parameterized Variants using Models. The code generation
algorithm systematically applies individual transformations based on analysis and models
(the details of the algorithm can be found in [2]). The compiler uses dependence analysis
to determine the legality of code transformations, locality analysis to evaluate data reuse
and select specific locality optimizations, register reuse analysis to estimate register pres-
sure, etc. The models include register, cache and TLB models and also incorporate various
heuristics for those optimizations. Along with each code variant, the compiler generates a set
of constraints for the optimization parameters, which are used in the second phase to guide
and prune the search. Table 2 shows the code transformations and parameters used by the
algorithm. The fourth column indicates whether a transformation results in more than one
code variant. For example, for loop permutation the algorithm may generate multiple code
variants, each with a different loop order, if it cannot decide which order is best statically.
Other transformations, such as loop tiling, do not increase the number of variants, but result
in code variants with unbound parameters, as illustrated in the table’s last column.

Phase 2: Search for Parameter Values. In this phase, a guided empirical search
performs a series of experiments to derive the best parameter values for each code variant.
In addition, code transformations that depend on parameter values are applied during this
phase. The resulting code variants are then compiled and executed on the target machine.
The search engine uses metrics collected by performance monitoring tools to evaluate the
quality of a code variant with a given set of parameter values. Currently we use PAPI to
collect performance data, and use processor cycles as the performance evaluation function
for the search.

In [2] we use compiler domain knowledge about specific optimizations to search the
parameter space efficiently. In the next section we discuss how to approach the search for
parameter values systematically and explore this problem in a broader context.

3 Systematically Searching the Parameter Space

The goal of this section is to provide insight into a systematic solution to Phase 2, searching
for integer parameter values of code variants to select the best variant and parameter set.
Before discussing search techniques, we describe aspects of the search that can be captured



by search algorithms to expedite the search and lead to high-quality solutions. We use the
memory hierarchy optimization problem to make the discussion more concrete. The search
for a set of parameter values leading to the best performance can be expressed as a function
of several features, which are specified by the compiler:

Search = {Parameters, Constraints, Dependence, Ordering, Starting Points}

Set of parameters. In the case of memory hierarchy optimization, let us assume we
are optimizing a single n-deep loop nest.2 Then the following set of parameters is associated
with each variant:

– UL1, . . . , ULn: unroll factors for each loop in an n-deep loop nest.
– TL1, . . . , TLn: tile sizes for each loop in an n-deep loop nest.
– PA1,L1, . . . , PA1,Ln, . . . , PAm,Ln: prefetch distances for arrays A1 through Am within the

loop nest.

Set of constraints on integer values. Phase 1 provides a set of constraints for each
unbound parameter of a code variant.3 For example, when unroll-and-jam is applied to
multiple loops the unroll factors should be such that reuse is maximized while satisfying
the register capacity constraints. In general, a constraint on unroll factors due to register
capacity can be expressed as a1 ∗ U1 + a2 ∗ U2 + . . . + an ∗ Un ≤ R, where ai is a constant
that depends on the loop nest and R is register file size. Similarly, tile sizes should be such
that the tile footprint fits in cache, and a constraint on tile sizes can be expressed as an
inequality involving the product of the tile sizes of each loop. These constraints prune off
uninteresting portions of the search space, and keep the search focused on the area of the
search space most likely to achieve the best results.

Dependence between parameters. Parameters that appear on a same constraint are
considered interdependent and are evaluated as a set. Unroll factors of multiple loops may
appear in a same constraint due to register capacity, and are considered interdependent.
Similarly, tile sizes of multiple loops may appear in one or more constraints related to cache
capacity. Unroll factors and tile sizes are considered independent from each other, based on
the knowledge that reuse in registers and caches are complementary as long as the unroll
factor of each loop in the original loop nest does not exceed the tile size of that same loop. In
practice tile sizes are typically much larger than unroll factors due to the difference between
cache and register file capacities found in most machines.

Ordering of parameter selection. In general, optimization parameters may be inter-
related, and the order in which they are evaluated may impact the search results. Compiler
domain knowledge can be use to determine a search ordering for parameters that are con-
sidered independent. In memory hierarchy optimization the benefits from unroll-and-jam
and scalar replacement are typically much higher than those of tiling and copying: reuse in
registers reduces the number of memory operations, while reuse in cache reduces only the
latency seen by the processor. Similarly, tiling reduces number of accesses to memory, while
prefetching hides the memory latency. Therefore, the search for unroll factors precedes the
search for tile sizes, which in turn precedes selecting prefetch distances. Since prefetching

2 Without loss of generality, if the code has multiple loop nests, each nest will have such a set of
parameters associated with them. For simplicity we treat them independently in this discussion.

3 Parameters that are set to their default values at Phase 1 indicate that an optimization should
not be performed. The default values for unroll factors, tile sizes and prefetch distances are 1, 1,
and 0, respectively.



may displace data from the cache, tiling parameters may need to be adjusted after prefetch
parameters are determined.

Starting points, stop criteria: Compiler models can suggest starting points for the
search based on domain knowledge, and provide stopping criteria by estimating bounds for
the performance of the optimized code variants.

3.1 A Systematic Search Space

Given the previous discussion, a systematic approach could search for parameter values using
the specified ordering of parameters, and within the specified constrained range. Although
much of the search space has been pruned away, there still remains a fairly large number of
points to search.

In the following we discuss how to incorporate domain knowledge in a systematic search
for parameter values, using the parameter space of the code variant shown in Figure 1(b)
as an example.4

Figure 3 shows a tree representation of the parameter space of the code variant in
Figure 1(b). The parameters of this code variant are the unroll factors UI , UJ and UK , the
tile sizes TI , TJ and TK , and the prefetch distance of array P in loop K, PP,K . The evaluation
function is measured execution time. Each tree level, except the root, corresponds to a set of
interdependent parameters. In this example the second level corresponds to unroll factors,
the third level to tile sizes and the fourth level to the prefetch distance PP,K . On a given
level, each node corresponds to a set of integer values for the parameters associated with
that level. For example, each node at the second level corresponds to a set {UI , UJ , UK}
where 1 ≤ UI , UJ , UK ≤ R, and R is the number of registers available. Hence each node is
a partial set of parameters for the code variant. Selecting a set of parameters corresponds
to finding a path, from root to a leaf node, such that the performance of the variant with
the complete set of parameter values in this path is maximized.

This tree representation incorporates some of the compiler’s domain knowledge discussed
in the previous section.

Dependence: In Figure 3 each node in the second level represents a set of interdepen-
dent unroll factors and each node in the third level represents a set of tile sizes. Unroll
factors and tile sizes are considered independent from each other and are represented as
different levels of the tree.

Ordering: The search tree has three levels, with parameters that have greatest impact
on performance at the highest levels. Thus the compiler’s domain knowledge about the effect
of optimizations on performance is captured by the order implied by the levels. Therefore
the search for unroll factors is performed before selecting tile sizes, which is performed before
selecting prefetch distances. If prefetching is found to be profitable the tree representation
allows the search to backtrack to a previous solution. For example, the search can explore
solutions with a larger tile size for the loop in which prefetches are inserted, to increase the
amount of latency that can be covered so that prefetches are effective.

Pruning the parameter space: Constraints derived at Phase1 are used to prune the
search. In Figure 3 all second-level nodes < UI = R, UJ ≥ 2, . . . > violate the constraint

4 Additional domain knowledge for guiding the search is the subject of future work, and include:
providing a direction for the search (upward, downward) based on estimated upper and lower
bounds for a parameter; providing a step size for traversing a given range (such as tile sizes
should be a multiple of the cache line size); exploiting characteristics of transformations (such as
reuse increases monotonically with each unroll factor).



pr
un
ed

by
U I
*U

J
*U

K
<=
RUI=1

UJ=1

UK=1

UI=1

UJ=1

UK=2

UI=1

UJ=1

UK=R

UI=1

UJ=2

UK=1

TI=1

TJ=1

TK=1

TI=1

TJ=1

TK=C

UI=R

UJ=1

UK=1

TI=1

TJ=1

TK=2

PP,K=1 PP,K=2 PP,K=3

root

pruned by TK>=UK

pr
un
ed

by
P P,

K
<=
T K

UI=1

UJ=2

UK=R/2+1

Fig. 3. Parameter space

UI ∗UJ ∗UK ≤ R. Therefore all subtrees rooted at these nodes can be pruned. In addition,
known properties of optimizations are used to guide and prune the search. For example, the
amount of reuse exposed by unroll-and-jam increases with the unroll factors, until there are
no more registers available and register spilling occurs. Hence when a set of unroll factors
U =< U1, U2, . . . , Un > results in a decrease in performance due to register spilling, all sets
V =< V1, V2, . . . , Vn > such that Vi ≥ Ui can be pruned.

Starting points: At present, we use models to suggest a starting point for parameter
values, based on the model’s estimate of the optimal solution, and provide stopping criteria
by estimating bounds for the performance of the optimized code variants.

3.2 AI Search Techniques

A multi-variable optimization problem, such as the one we are considering, can be cast as a
search problem. The field of Artificial Intelligence (AI) has developed various search tech-
niques for solving complex, multi-parameter optimization problems, which are characterized
by very large and rough parameter landscapes. Search starts at some point in the parameter
search space and progresses until a solution (a maximum in the objective function, such
as performance) is found. Exhaustive algorithms, such as depth-first and breadth-first for
searching trees, that evaluate every point in the parameter search space cannot be applied
in practice due to the size of the search space. Methods such as hill climbing often fail due
to roughness of landscape (that is, the existence of many local maxima). To address these
issues, random and heuristic search algorithms have been developed [5].

Random search algorithms explore small neighborhoods of the search space at differ-
ent points throughout the parameter space, keeping track of the quality of the solutions
found. Typically, the search is terminated after some time when only a small portion of
the search space has been explored. The resulting solution, while rarely the best, is often
a good enough solution. Random algorithms have been shown to successfully solve hard
optimization problems, such as GSAT.

Heuristic search introduces a function that evaluates the quality of the solution. The
main differences between random and heuristic search techniques are how the parameter



space is explored and how the quality of a solution is evaluated. Heuristic hill climbing
explores a local neighborhood of a solution, evaluating the new solution. If a new solution is
better than the previous solution, the search resumes from this point. In effect, the search is
guided to a local maximum. Simulated annealing and genetic algorithms typically choose a
new solution at random, thus avoiding being stuck in local maxima. Simulated annealing in
particular first samples many points in the parameter space randomly, then settles down for
finer local search in the best neighborhood. Best-first search algorithms, on the other hand,
choose a new point in the path to the best solution based on a heuristic, or an evaluation
function. A* algorithm is a best first algorithm that includes the cost of getting to the
current point in the parameter space in its evaluation function. Backtracking, or returning
to a previous best solution, can be implemented to continue exploration of profitable paths
while avoiding getting stuck in dead ends.

In future work, we plan to evaluate this set of AI search techniques to identify the
contribution of domain knowledge to speeding up the search process, and compare the
resulting code quality when search time is constrained.

4 Conclusion

This paper shows how the problem of optimizing for multiple levels of the memory hierarchy
can be recast as a multi-variable optimization problem. We formalized our approach as an
AI search problem and identified search algorithms suitable for our optimization problem.
We feel this work is an important first step in a general strategy for developing a principled
approach to solving complex multi-variable optimization problems in a compiler, such as
managing locality and communication in parallel codes.

References

1. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming interface
for performance evaluation on modern processors. International Journal of High Performance

Computing Applications, 14(3):189–204, Aug. 2000.
2. C. Chen, J. Chame, and M. W. Hall. Combining models and guided empirical search to optimize

for multiple levels of the memory hierarchy. In Proc. of the International Symposium on Code

Generation and Optimization, Mar. 2005.
3. K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for reduced code space using

genetic algorithms. In Proc. of the Workshop on Languages, Compilers, and Tools for Embedded

Systems, May 1999.
4. M. Frigo. A fast Fourier transform compiler. In Proc. of the Conference on Programming

Language Design and Implementation, May 1999.
5. N. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufman, San Francisco, CA,

1998.
6. M. Stephenson, S. Amarasinghe, M. Rinard, and U. O’Reilly. Meta optimization: Improving

compiler heuristics with machine learning. In Proc. of the Conference on Programming Language

Design and Implementation, June 2003.
7. X. Vera, J. Abella, A. González, and J. Llosa. Optimizing program locality through CMEs

and GAs. In Proc. of the International Conference on Parallel Architectures and Compilation

Techniques, Sept. 2003.
8. R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software

and the ATLAS project. Parallel Computing, 27(1–2):3–35, Jan. 2001.
9. K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and P. Stodghill. Is search really

necessary to generate high-performance BLAS? Proceedings of the IEEE, 93(2):358–386, Feb.
2005.


