
On Generalization By Neural Networks

Subhash C. Kak

Department of Electrical & Computer Engineering

Louisiana State University

Baton Rouge, LA 70803-5901

Email: kak@ee.lsu.edu

March 24, 1998

Abstract

We report new results on the corner classification approach to

training feedforward neural networks. It is shown that a prescrip-

tive learning procedure where the weights are simply read off based

on the training data can provide good generalization. The paper also

deals with the relations between the number of separable regions and

the size of the training set for a binary data network. Prescriptive

learning can be particularly valuable for real-time applications.

1 Introduction

A new approach to training feedforward neural networks for binary data
was proposed by the author [2, 3]. This is based on a new architecture
that depends on the nature of the data. It was shown that this approach is
much faster than backpropagation and provides good generalization. This
approach, which is an example of prescriptive learning, trains the network by
isolating the corner in the n-dimensional cube of the inputs represented by
the input vector being learnt. Several algorithms to train the new feedforward
network were presented. These algorithms were of three kinds. In the first
of these (CC1) the weights were obtained upon the use of the perceptron
algorithm. In the second (CC2), the weights were obtained by inspection

1

from the data, but this did not provide generalization. In the third (CC3),
the weights obtained by the second method were modified in a variety of ways
that amounted to randomization and which now provided generalization.
During such randomization some of the learnt patterns could be misclassified;
further checking and adjustment of the weights was, therefore, necessitated.
Various comparisons were reported in [6, 9, 7]. The comparisons showed that
the new technique could be 200 times faster than the fastest version of the
backpropagation algorithm with excellent generalization performance.
In this article we show how generalization can be obtained for such bi-

nary networks just by inspection. We present a modification to the second
method so that it does provide generalization. This technique’s generaliza-
tion might not be as good as when further adjustments are made, but the
loss in performance could, in certain situations, be more than compensated
by the advantage accruing from the instantaneous training which makes it
possible to have as large a network as one pleases. Experimental results in
support of our method are presented.

Hidden Neurons

It is well known [8, 1] that the number of hidden neurons, H, needed to
separate M number of regions in a d−dimensional space is given by

M(H, d) =
d
∑

k=0

(

H
k

)

(1)

where
(

H
k

)

= 0, H < k.

Let the number of regions that the hidden neurons separate be equal to
C, where C ≤M . Since the number of classes at the output is only equal to
2, these C regions coalesce into the 2 classes at the output.
Let the input space dimension be d and let each dimension be quantized

so that the total number of of binary variables is n. Not each dimension
may require the same precision. If the average number of bits used per input
dimension is q then n = q × d.
If the number of training samples is T , then M ≤ T . For d = 1, H =

M − 1, for d = 2, H = (
√

(8M − 7)− 1)/2, and for d ≥ H, H = log2M .

2

When the data points are binary, as in our case, then these formulas
require modification. The set of 2n data points can now be separated by a
total of n hidden neurons. But the outputs of these hidden neurons need to
be combined using various logical operations to pass specific input patterns.
This is not a desirable strategy to adopt if the learning is supposed to be
decentralized with a cumulative response to all the training data.
Our network has H nearly equal to T (or M), therefore, our algorithms

consider the data as effectively one-dimensional.

2 Prescriptive Training

We assume that the reader is familiar with the background papers [2, 3]. We
consider the mapping Y = f(X), whereX and Y are n− andm−dimensional
binary vectors. But for convenience of presentation, it will be assumed that
the output is a scalar, or m = 1. Once we know how a certain ouput bit
is obtained, other such bits can be obtained similarly. We consider binary
neurons that ouput 1 if and only if the sum of the inputs exceeds zero. To
provide for effective non-zero thresholds to the neurons of the hidden layer
an extra input xn+1 = 1 is assumed. In the earlier formulations of the rule
we took the weights in the output layer all equal 1. Kun Won Tang has
suggested that it is much better to take the weights as equal to 1 if the
output value is 1 and -1 if the output value is 0. This amounts to learning
both the “1” and the “0” output classes.
A hidden neuron is required for an input vector for each training sample,

so that one might say that the hidden neuron ‘recognizes’ the training vector.
Consider such a vector for which the number of 1’s is s; in other words,
∑n

i=1 xi = s. The weights leading from the input neurons to the hidden
neurons are:

wj =

h if xj = 0, for j = 1, ..., n,
+1 if xj = 1, for j = 1, ..., n,
r − s+ 1 for j = n+ 1.

(2)

The values of h and r are chosen in various ways. This is a generalization
of the expression in [2, 3] where wj for j = n + 1 is taken to be (r − s + 1)
rather than (1− s), and where h = −1.

3

This change allows the learning of the given training vector as well as
others that are at a distance of r units from it (for h = −1); in other words,
r is the radius of the generalized region. This may be seen by considering the
all zero input vector. For this wn+1 = r. Since, all the other weights are −1
each, one can at most have (r− 1) different +1s in the input vector for it to
be recognized by this hidden neuron.

Choice of r

The choice of r will depend upon the nature of generalization sought.
If no generalization is needed then r = 0. For exemplar patterns, the

choice of r defines the degree of error correction.
If the neural network is being used for function mapping, where the input

vectors are equally distributed into the 0 and the 1 classes, then r = bn
2
c.

This represents the upper bound on r for a symmetric problem.
But the choice will also depend on the number of training samples.

Choice of h

The choice of h also influences the nature of generalization. Increasing h
from the value of −1 correlates patterns within a certain radius of the learnt
sequence.
This may be seen most clearly by considering a 2−dimensional problem.

The function of the hidden node can be expressed by the separating line:

w1x1 + w2x2 + (r − s+ 1) = 0. (3)

This means that

x2 =
−w1

w2

x1 +
−(r − s+ 1)

w2

. (4)

Assume that the input pattern being classified is (0 1), then x2 = 1. Also,
w1 = h, w2 = 1, and s = 1. The equation of the dividing line represented by
the hidden node now becomes:

x2 = −hx1 − r. (5)

4

When h = −1 and r = 0, the slope of the line is positive and only the
point (0, 1) is separated. To include more points in the learning, h > 0,
because the slope of the line becomes negative.

Relationship between h and r

Consider the all zero sequence (0 0 ... 0). After the appending of the 1
threshold input, we have the corresponding weights (h h ... h r+1). Sequences
at the radius of p from it will yield the strength of ph+ r+1 at the input of
the corresponding hidden neuron. For such signals to pass through

ph+ r + 1 > 0. (6)

In other words, generalization by a Hamming distance of p units is achieved
if

h >
−(r + 1)

p
. (7)

When h = −1; p < r + 1, or it may be taken to be equal to r. When
h = positive, all the input patterns where the 0s have been changed into 1s
will also be passed through and put in the same class as the training sample.
The network architecture for learning the XOR problem is given in Figure

1; this has four hidden neurons, one for each output. An example of a net-
work which maps three 5-component input vectors into 2-component output
vectors is given in Figure 2.
Figur3 provides the genralization obtained by using our method for train-

ing a ‘spiral.’ Notice that for r = 4 we have overgeneralization.

3 Training samples

The total number of sequences 2n equals the number of classification classes
M times the average number of members in each class.
Let the radius of the class i be ri. The number of elements in this class

will be

ri
∑

k=0

(

n
k

)

. (8)

5

If all the classes are of the same size and each class is represented by a
single training sample:

T ×
r
∑

k=0

(

n
k

)

= 2n. (9)

The following table gives the size of the training set for the example of
n = 10; 2n = 1, 024.

Table I: Generalization and training set size

r T
0 1,024
1 32
2 12
3 9

Since the probability that each training sample belongs to a different class
could be small, the above numbers represent very rough estimates.

3.1 Experimental Results

Experiments were conducted on several kinds of time-series. Part of the time
series was used for finding the weights; the rest was used to test the model. A
window of w preceding points was used to predict the next point in the time
series. All the analog values were quantized. In a variation of this method
the weights were updated further as new data came in. For the time-series
considered the best results were obtained when the radius of generalization
r was about the same value as the window size w or, in other words, r ≈ w.
Results on prediction for the Mackey-Glass (MG) time series are presented

in Figure 4. The MG series is a commonly used benchmark because it is
a chaotic time series which represents a difficult case for prediction. The
data generated by the MG equation mimicks the nonlinear oscillations in
physiological processes. The discrete time representation of the MG equation
is given by

x(k + 1)− x(k) =
αx(k − τ)

1 + xγ(k − τ)
− βx(k) (10)

Another way to improve generalization is by varying the radius of gener-
alization with the training sample. This may be done easily if each training
sample can be characterized by a measure of quality which may be possible
to do for certain situations.

6

Figure 5 gives prediction for the logistic map time series given by

x(k + 1) = 4x(k)(1− x(k)) (11)

The training window size for the cases of the prediction in Figures 4 and
5 is very small and the quantization is course which is why the learning
is not perfect for the training period. The performance gets better as the
quantization levels are increased and the window size gets larger. The results
for such cases as well as techniques of supervised tuning will be published
elsewhere.

4 Concluding Remarks

The generalized prescriptive rule presented in this paper makes it possible
to train a neural network instantaneously. There is no need for any com-
putations in determining the weights. This allows the building up of neural
networks of unlimited size.
It may be useful to use a two-step strategy when the learning method

described in this article is used. In the first step use a separate network to
determine the mode of the data. For example, for stock market data one
may define the outputs (1 0), (0 1) for bear and bull markets, respectively;
and (0 0), (1 1) for two different kinds of stagnating markets. Once, the
determination of the type of market has been made, the data can be used on
specific networks, trained on that kind of data, to make the prediction. The
logic behind this two-step approach is that, lacking any supervisory training,
our networks are good only in separating a single class at any particular time.
But the strategy of two-step response is also biologically motivated. The

brain reorganizes itself in response to an input; likewise, the artificial neural
network chosen to deal with an input is based on the nature of the input.
The instantaneous method of neural network training described in this

paper could be the method at work in biological systems. This learning could
form part of a hierarchy of different languages of the brain [4, 5].

Acknowledgement

The author is grateful to Kun Won Tang for performing the experiments.
This research was partly supported by NASA.

7

References

[1] G. Georgiou, Comments on ‘On Hidden Nodes.’ IEEE Trans. on Circuits

and Systems 38, 1410 (1991).

[2] S.C. Kak, On training feedforward neural networks. Pramana -J. of

Physics, 40, 35-42 (1993).

[3] S.C. Kak, New algorithms for training feedforward neural networks. Pat-

tern Recognition Letters, 15, 295-298 (1994).

[4] S.C. Kak, Quantum neural computing. Advances in Imaging and Elec-

tron Physics, 94, 259-313 (1995).

[5] S.C. Kak, The three languages of the brain: quantum, reorganizational,
and associative. In Learning as Self-Organization, K. Pribram and J.
King (eds.). Lawrence Erlbaum, Mahwah, 1996, pp. 185-219.

[6] S.C. Kak and J. Pastor, Neural networks and methods for training neural
networks. U.S. Patent No. 5,426,721, June 20, 1995.

[7] K.B. Madineni, Two corner classification algorithms for training the Kak
feedforward neural network. Information Sciences 81, 229-234 (1994).

[8] G. Mirchandani and W. Cao, On hidden nodes for neural nets. IEEE

Trans. on Circuits and Systems 36, 661-664 (1989).

[9] P. Raina, Comparison of learning and generalization capabilities of the
Kak and the backpropagation algorithms. Information Sciences 81, 261-
274 (1994).

8

Figure captions

Figure 1. Network architecture for learning the XOR function
Figure 2. Network architecture for the example below
Figure 3. Pattern classification for different values of r
Figure 4. Prediction of Mackey-Glass time series: “*” actual data, train-

ing to 379, testing 380-400 (marked with “o”); Window size=4, r=4, predict
ahead by 1 point
Figure 5. Prediction of Logistic Map chaotic time series (seed=0.9): “*”

actual data, training to 379, testing 380-400 (marked with “o”); Window
size=4, r=4, predict ahead by 1 point

9

