When / Where

Friday, 21 March 2003, 13:40-14:30 CST
CEBA 3140 (Here)

Conditions

Closed Book, Closed Notes
Bring one sheet of notes (both sides), 216 mm × 280 mm.
No use of communication devices.

Format

One or two medium-sized problems, short answers.

Resources

Solved tests and homework: http://www.ece.lsu.edu/ee4720/prev.html

Study Recommendations

Study this semester’s homework assignments. Similar problems may appear on the exam.

Solve Old Problems
Memorizing solutions is not the same as solving.
Following and understanding solutions is not the same as solving.
Use the solutions for brief hints and to check your own solutions.

Emphasis

Implementation Diagrams and Pipeline Execution Diagrams
They are a team, so study them together.

Instruction Use
Should be able to easily write MIPS programs.
Should be able to use other instructions in examples.
For example, SPARC, DLX, etc.
Not required to memorize instruction names, except for common MIPS instructions.

Topics

Introductory Material
ISA vs. Implementation.
Technological factors: Transistor speed and quantity, memory speed and size.
Different factors influencing ISA and implementation.
Design principles: Amdahl’s law, locality.
CPU Performance Equation
Benchmark types
Compiling and Optimization

SPEC Benchmark Suite
SPEC membership and their interests.
Benchmark programs (types, how they were selected).
Rules for running benchmarks and disclosing results.
Compilers and Optimization

Steps in building and compiling.
Basic optimization techniques, compiler optimization switches.
Profiling.
Compiler ISA and implementation switches.
How programmer typically uses compiler switches (options).

Instruction Set Design

Data Types: What to include, what to leave out.
Basic integer and floating point
Packed types: BCD, integer, saturating integer.
Size choices.
Memory and Register Organization: Why ≈ 32 registers?
Stack and accumulator architectures.
Memory/Memory, Register/Memory.
Addressing Modes: What they do, which ones to include.
Register, Immediate, Direct, Register Deferred (Register Indirect), Displacement, Indexed, Memory Indirect, Autoincrement, Autodecrement, Scaled.

Control Transfer Instructions: Types, when to use.
Branch, Jump, Jump & Link, Call, Return
Format of displacements in instruction.
Specification of condition: condition code registers, integer registers, loop counter.
Delayed and predicated instructions; prediction hints.
Instruction Coding.
Fixed-length, variable-length, and bundled instructions.
Splitting of opcode field (as in MIPS type-R instructions).
ISA Classifications: RISC, CISC, VLIW, Stack, Accumulator
Synthetic Instructions

MIPS and DLX

Classification: RISC
Goals: ISA should allow simple, high-speed implementation.
Instruction types.
Know how to read and write MIPS and DLX programs.
HP Chapter-3 (Statically Scheduled) MIPS Implementations
Unpipelined Implementation
Pipelined Implementations
Basic (3-cycle branch penalty).
Zero-cycle branch penalty.
Bypassed.
Dependency Definitions
Hazard Definitions
For a Given Pipelined Implementation
 Show pipeline execution diagrams.
 Show register contents at any cycle.
 Determine control hardware.
 Determine CPI.