EE 4720 Homework 3 Due: 13 March 1998

The program below is referred to in the problems.

```plaintext
!! r4 holds a limit
!! r5 holds the first array element address
add r2, r0, r0 ! Clear sum register.
add r5, r10, rll ! Set r5 to first element.

LOOP:
lw r6, 0(r5)
add r2, r2, r6
slt r3, r2, r4
addi r5, r5, #4
bneq r3, LOOP
```

The program executes on the DLX Chapter-3 implementation in which the branch address is computed in the ID stage, as shown in the corrected version of Figure 3.22 (COPYRIGHT 1990, 1996 MORGAN KAUF-MANN PUBLISHERS, INC. ALL RIGHTS RESERVED), to the right. The pipeline also includes bypass (forwarding) paths to the ALU (not shown).

Problem 1: Draw a pipeline execution diagram showing the first two iterations of the program executing on the implementation above. What is the CPI while executing the loop?

Problem 2: Explain how adding forwarding paths to the ID stage would speed the execution of the branch instruction.

Problem 3: Consider an implementation that uses the ID-stage forwarding paths mentioned in the problem above and which also has a branch delay slot. Re-write the program above so that it executes as fast as possible. Draw a pipeline execution diagram showing the first two iterations and compute the CPI of the loop execution.