Problem 1: Draw a schematic of the logic circuit described by the Verilog code below.

module pie(x,a,b,c);
 input a, b, c; output x;
 wire t1, nc;
 and a1(t1,a,b);
 not n1(nc,c);
 or o1(x,t1,nc);
endmodule
Problem 2: Draw a schematic of the logic circuit described by the Verilog module `twoterms` below.

- Show the contents of each instantiated module. (That is, do not just show a box labeled `term101` or `twoterms`.)

- Show using AND, OR, and NOT gates, inferring the correct gate for the Verilog operators used in the `assign` expression.

- To the extent possible, label the diagram using the port names defined by `twoterms` (x, a, b, c, and d).

```verilog
module term101(x,a,b,c);
  input a, b, c; output x;
  assign x = a && !b && c;
endmodule

module twoterms_bundle(x,a);
  input [3:0] a; output x;
  wire t0x11, t10x11;
  term101 t0(t0x11,a[1],a[3],a[0]);
  term101 t1(t10x1,a[2],a[1],a[0]);
  or o1(x, t0x11, t10x11);
endmodule

module twoterms(x,a,b,c,d);
  input a,b,c,d; output x;
  wire [3:0] bundle;
  assign bundle[3:0] = {a,b,c,d};
  twoterms_bundle t(x,bundle);
endmodule
```

Solution appears below. The labels defined by module `twoterms` appear in **green bold**. Notice that at the input to `twoterms` the four inputs, a, b, c, and d are concatenated into a single wire named `bundle`. This is shown in the diagram using a medium-weight line. The opposite operation is performed by the bit select operator (such as `a[0]`) operating on a (a.k.a. `bundle`) in `twoterms_bundle`. This is also shown with a medium-weight line, but this time the input is a 4-bit wire (a) and there are four 1-bit outputs.
Problem 3: Write a Verilog explicit structural description of the following logic.

![Logic Diagram]

Solution appears below.

```verilog
module problem_3(out,x,y,z,w);
  input x,y,z,w;
  output out;
  and a1(xy,x,y);
  not n1(nz,z);
  and a2(xynz,x,y,nz);
  and a3(xyw,x,y,w);
  or o1(out,xy,xynz,xyw);
endmodule
```

Problem 4: Write a Verilog implicit structural description of the following logic.

![Logic Diagram]

Solution appears below.

```verilog
module problem_4(out,x,y,z,w);
  input x,y,z,w;
  output out;
  assign out = x && y || x && y && ~z || x && y && w;
endmodule
```