Name ____________________________

Computer Organization
EE 3755
Midterm Examination
29 October 2001, 12:40-13:30 CST

Problem 1 _______ (16 pts)
Problem 2 _______ (16 pts)
Problem 3 _______ (20 pts)
Problem 4 _______ (16 pts)
Problem 5 _______ (16 pts)
Problem 6 _______ (16 pts)

Alias ____________________________ Exam Total _______ (100 pts)

Good Luck!

(16 pts)

module cla_32(sum,a,b);
 input [31:0] a, b;
 output [32:0] sum;

 wire [31:0] g, p, carry;

 // Code for other carry signals omitted.
 //
 // Start answer here ↓

 assign carry[5] =

 cla_slice s0(sum[0],g[0],p[0],a[0],b[0],carry[0]);
 cla_slice s1(sum[1],g[1],p[1],a[1],b[1],carry[1]);
 cla_slice s2(sum[2],g[2],p[2],a[2],b[2],carry[2]);
 // Code for other cla_slices omitted.
 cla_slice s5(sum[5],g[5],p[5],a[5],b[5],carry[5]);
 // Code for other cla_slices omitted.

endmodule
Problem 2: Complete the module below so that 32-bit output `sum` is the sum of its 32-bit inputs, `a` and `b`. If input `s` is 1 then `a` and `b` are signed integers, otherwise they are unsigned integers. Output `overflow` should be set to 1 if the sum overflows.

The module should synthesize to combinational logic. The solution can (and should) use the addition operator. (16 pts)

For partial credit, explain how to detect overflow in signed and unsigned addition.

```verilog
module add(sum, overflow, a, b, s);
    input [31:0] a, b;
    input s;
    output [31:0] sum;
    output overflow;
endmodule
```
Problem 3: The module below examines a bit sequence one bit per clock cycle, as did the module in Homework 2 Problem 2. The input bit is valid on the positive edge of clk, that bit is the first of a new sequence if reset is high. The output, lrun, must be the longest number of consecutive 1’s encountered since the last time reset was 1. For example, after 00111010 is received the output should be 3 since that is the length of the longest run of 1’s. Also see the example timing below. As in Homework 2 the module must synthesize to sequential logic. (20 pts)

```verilog
module longest_run(lrun, bit, reset, clk);
    output [31:0] lrun;
    input bit, reset, clk;
endmodule
```

```
```
endmodule
```
Problem 4: Show the hardware that the module below will synthesize in to. Indicate the types (edge- or level-triggered) of any registers synthesized.

(16 pts)

module syn(x,r,a,b,m,neg);
    input [31:0] a, b;
    input m, neg;
    output [31:0] x, r;

    reg [31:0] x, r, bn;

    always @( a or b or m or neg ) begin
        if( neg ) bn = -b; else bn = b;
        x = a + bn;
        if( m ) r = x + b;
    end
endmodule
Problem 5: Convert the following numbers: (16 pts)

Decimal 12 to 8-bit Binary:

Decimal -12 to 8-bit Binary:

Decimal $12\frac{5}{8}$ to Binary (as many bits as needed):

Decimal $12\frac{5}{8}$ to Normalized Binary Scientific Notation (write as $f \times 2^e$):

Decimal $12\frac{5}{8}$ to IEEE 754 Single Precision (Show in hexadecimal):
Problem 6: The high-radix Booth multiplier is faster than the radix-2 multipliers (for example, the streamlined signed multiplier). (16 pts)

(a) Compared to the streamlined signed multiplier, what additional hardware is needed for a high-radix Booth multiplier?

(b) Name two advantages that a high-radix Booth multiplier has over an ordinary high-radix multiplier.