A New Multi-Moduli Residue Number Systems with moduli of forms
\[2^{n_1} + 1, \ 2^{n_2} - 1, \ 2^{n_3} \]

The interested reader can find more information on the above subject in the following references:

References

Theory

Consider the following sets
\[S_1 = \{ 2^4 + 1, 2^6 + 1, 2^8 + 1, 2^9 + 1, \ldots \} \]
\[S_2 = \{ 2^{\cdot 6} + 1, 2^{\cdot 8} + 1, 2^{\cdot 10} + 1, 2^{\cdot 12} + 1, \ldots \} \]
\[S_3 = \{ 2^{\cdot 4} + 1, 2^{\cdot 8} + 1, 2^{\cdot 12} + 1, 2^{\cdot 16} + 1, \ldots \} \]
\[S_4 = \{ 2^{\cdot 5} + 1, 2^{\cdot 10} + 1, 2^{\cdot 15} + 1, 2^{\cdot 20} + 1, \ldots \} \]
\[S_5 = \{ 2^{\cdot 6} + 1, 2^{\cdot 12} + 1, 2^{\cdot 18} + 1, 2^{\cdot 24} + 1, \ldots \} \] \hspace{1cm} (1)

where in general
\[S_d = \{ \text{all numbers } N_{k,d} \text{ such that } N_{k,d} = 2^{d \cdot k + 2^{d-1}} + 1 \} \] \hspace{1cm} (2)
\[k = 0, 1, 2, 3, \ldots, \] where \(d = 1, 2, 3, \ldots \).

Observation: All the numbers in the \(S_d \) sets, \((d=1, 2, 3, \ldots) \), represent all possible integers of the form \(2^n + 1 \) for any \(n = 1, 2, 3, \ldots \).

The binary exponents (i.e., the exponents of two) of the numbers of the \(S_d \) sets have the following properties.

Property 1: Exponents of adjacent numbers in any set \(S_d \), \((d=1, 2, 3, \ldots) \), differ by \(2^d \).

Property 2: The number \(2^n + 1 \) belongs to the set \(S_d \) if and only if \(\langle n \rangle_{2d} = 2^{d-1} \).
In other words, what properties 1, 2 dictate are:

- **Property 1** dictates that exponents of adjacent numbers in sets $S_1, S_2, S_3, S_4, S_5, \ldots$ differ by 2, 4, 8, 16, 32, \ldots, etc...

- **Property 2** dictates that the binary exponents (i.e., the exponents of two) for numbers belonging to sets $S_1, S_2, S_3, S_4, S_5, \ldots$ are of forms $2k+1, 4k+2, 8k+4, 16k+8, 32k+16, \ldots$, etc...

Lemma 1: The first number in any S_d set is a common divisor of all the numbers in the same set (it divides all the numbers in the same set).

Theorem 1: Any two numbers of the form 2^n+1 are relatively prime if and only if they belong to two different S_d sets.

Theorem 2: If n_1 is any integer and n_2 is an odd integer, then the numbers $2^{n_1}+1$ and $2^{n_2}-1$ are relatively prime.
Theorem 3: The numbers $2^{n_1} - 1$ and $2^{n_2} - 1$ are relatively prime if and only if n_1 and n_2 are relatively prime.

Moduli Selection Rules

The presented theorems provide the necessary background for selecting moduli sets with moduli of the forms $2^{n_1+1}, 2^{n_2-1}, 2^{n_3}$. Some selection rules follow which can act as guidelines for such successful moduli selections.

1. Only one modulus of the form 2^s can be chosen.
2. Any number of moduli of the form 2^{n+1} can be chosen, as long as they belong to different S_4 sets (see Theorem 1). Together with these, the numbers $2^{n_1+1}, 2^{n_2-1}, \ldots, 2^{n_L-1}$ can be chosen as long as n_1, n_2, \ldots, n_L are pairwise relatively prime odd integers (see Theorems 2, 3).
3. Only one modulus of the form $2^n - 1$ where n is even can be chosen (see Theorem 3). In this case, the number $2^n - 1$ must be factorized and its factors will then determine which numbers must be excluded from possible moduli choices.
For example, suppose that the number $2^{44}-1$ is chosen as one of the moduli choices. Observe that $2^{44}-1 = (2^{11}-1)(2^{11}+1)(2^{22}+1)$. Since $2^{11}+1 \in S_1$ and $2^{22}+1 \in S_2$, no numbers can be chosen from the sets S_1 and S_2 (see Theorem 1). Also, the number $2^{11}-1$ dictates that no number of the form 2^d-1 where $(d,11) \neq 1$ can be chosen (see Theorem 3).

4. The product of the moduli should be large enough in order to implement the desired dynamic range.

5. For a given dynamic range, the largest modulus should be as small as possible so that the RNS system can have the highest possible performance. This implies that the moduli m_i must be as close as possible to one another, creating this way a balanced decomposition of the dynamic range.

A new balanced 8-moduli set resulting from the presented theory follows:
A new balanced 8-moduli set

\[p = \{ m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8 \} \]

\[= \{ 2^{n-3}, 2^{n-2}+1, 2^{n-1}, 2^{n-1}-1, 2^{n+1}, 2^{n+1}-1, 2^{n+1}+1, 2^{n+2} \} \]

where \(n = 4k+2 \), \(k \) is an integer.

The moduli of set 8 \(P \) are pairwise relatively prime.

- The moduli \(m_6 \) and \(m_4 \) belong to sets \(S_1 \) and \(S_2 \) respectively (see property 2).
- Neither \(m_2 \) nor \(m_7 \) can belong to \(S_2 \) or \(S_1 \) (see property 2), while they have to belong to two different sets \(S_d \) and \(S_d' \) where \(d > 2, d' > 2 \) and \(d \neq d' \) (see property 1).

Therefore, \(m_2, m_4, m_6, m_7 \) belong to four different \(S_d \) sets and due to
Theorem 1 are pairwise relatively prime.

• The pairwise relatively prime exponents $n-3$, $n-1$, $n+1$ dictate that m_1, m_3, m_5 are also relatively prime in pairs (see theorem 3); (given the fact that $n-3$, $n-1$, $n+1$ are odd integers, can you prove that they are pairwise relatively prime?)

• Finally, theorem 2 suggests that the entire set P of eq. (3) consists of pairwise relatively prime moduli.

The set P is the most balanced 8-moduli set consisting of attractive moduli forms 2^a-1, 2^b+1, 2^c (see that exponents of adjacent moduli differ by at most 1 (one)).
Example 1: Consider the previously presented 8-moduli set (the set P of (3)) for $n = 10$; (see that $10 = 4 \times 2 + 2$).

Then

$$P_{(n=10)} = \{2^7 - 1, 2^8 + 1, 2^9 - 1, 2^{10} + 1, 2^{11} - 1, 2^{11} + 1, 2^{12} - 1, 2^{12} + 1\}.$$

The dynamic range for such a system is

$$DR \equiv (7 + 8 + 9 + 10 + 11 + 11 + 12 + 12) \text{ bits} = 80 \text{ bits}.$$
The Quadratic Residue Number System (QRNS)

• Complex Multiplication in the ring \mathbb{Z}_m

Consider two complex numbers $a + jb$ and $c + jd$ where $j = \sqrt{-1}$, $a \in \mathbb{Z}_m$, $b \in \mathbb{Z}_m$, $c \in \mathbb{Z}_m$, $d \in \mathbb{Z}_m$. Then the product of the two complex numbers in \mathbb{Z}_m is

$\langle (a + jb)(c + jd) \rangle_m =$

$\langle \langle ac \rangle_m - \langle bd \rangle_m \rangle_m + j \langle \langle ad \rangle_m + \langle bc \rangle_m \rangle_m$

The computational requirement for the complex multiplication is four real multiplications and two additions.

• The Quadratic Residue Number System (QRNS)

The QRNS can perform the multiplication of two complex numbers using only two real multiplications. This achievement is possible if the quadratic equation $x^2 + 1 = 0$ has two distinct roots in \mathbb{Z}_m.

\square
The QRNS mapping and inverse mapping

Consider a complex number $a + jb$ with $a \in \mathbb{Z}_m$, $b \in \mathbb{Z}_m$ and let r be a root of $x^2 + 1 = 0$ in \mathbb{Z}_m (this means that r is an integer such that $r \in \mathbb{Z}_m$ and $\langle r^2 + 1 \rangle_m = 0$).

The QRNS mapping is described by

$$a + jb \overset{\text{QRNS}}{\longrightarrow} (a^*, b^*)$$

(4)

where

$$a^* = \langle a + rb \rangle_m \quad b^* = \langle a - rb \rangle_m$$

(5)

The inverse QRNS mapping is given by

$$(a^*, b^*) \overset{\text{QRNS}^{-1}}{\longrightarrow} a + jb$$

where

$$a = \langle 2^{-1}(a^* + b^*) \rangle_m$$

(6)

$$b = \langle 2^{-1}r(b^* - a^*) \rangle_m$$

(7)
Processing in the QRNS domain

Let \(a, b, c, d \in \mathbb{Z}_m \) and let the complex numbers \(a+jb \) and \(c+jd \) have the following QRNS representations:

\[
\begin{align*}
 a+jb & \xrightarrow{\text{QRNS}} (a^*, b^*) \\
 c+jd & \xrightarrow{\text{QRNS}} (c^*, d^*)
\end{align*}
\]

Then

\[
\left<(a+jb) \circ (c+jd)\right>_m \xrightarrow{\text{QRNS}} \left<(a^* \circ c^*)_m, (b^* \circ d^*)_m\right>
\]

where \(\circ \) can be +, −, ×.

\textbf{Theorem 4:} Let \(m \) be an integer and let its prime decomposition be \(m = p_1^{e_1} p_2^{e_2} \cdots p_L^{e_L} \) where \(p_1, p_2, \ldots, p_L \) are prime integers while \(e_1, e_2, \ldots, e_L \) are integers. Then the quadratic equation \(x^2 + 1 = 0 \) has two distinct roots in \(\mathbb{Z}_m \) if and only if \(p_i = 4k_i + 1 \), \(i = 1, 2, \ldots, L \) where \(k_1, k_2, \ldots \) \(k_L \) are integers.
Example 2: Using the QRNS technique perform in \(\mathbb{Z}_{13} \) the complex multiplication
\[
e + jf = ((a + jb)(c + jd))_{13} \text{ where } a = 5, b = 6, \\
c = 7, d = 8.
\]

Solution: Here \(m = 13 \) is a prime and \(13 = 4 \times 3 + 1 \). The QRNS Theorem\(^4\) then dictates that \(x^2 + 1 = 0 \) has two distinct roots in \(\mathbb{Z}_{13} \). One such root is \(r = 5 \) (observe that \(\langle 5^2 + 1 \rangle_{13} = \langle 26 \rangle_{13} = 0 \)).

QRNS Mapping:

The QRNS mapping described by eqs (4) - (5) gives
\[
a + jb = 5 + j 6 \xrightarrow{QRNS} (a^*, b^*) = \left(\langle 5 + 5 \times 6 \rangle_{13}, \langle 5 - 5 \times 6 \rangle_{13} \right) = (9, 1).
\]
\[
c + jd = 7 + j 8 \xrightarrow{QRNS} (c^*, d^*) = \left(\langle 7 + 5 \times 8 \rangle_{13}, \langle 7 - 5 \times 8 \rangle_{13} \right) = (8, 6).
\]

QRNS Multiplication:

\[
e + jf = \langle (a + jb)(c + jd) \rangle_{m} \xrightarrow{QRNS} \langle a^*c^* \rangle_{m}, \langle b^*d^* \rangle_{m}
\]
\[
= \langle 9 \times 8 \rangle_{13}, \langle 1 \times 6 \rangle_{13} = 7, 6) = (e^*, f^*).
\]
QRNS Inverse Mapping:

Equations (6), (7) give

\((e^*, f^*) \xrightarrow{\text{QRNS}^{-1}} (e, f)\)

where

\[e = \langle 2^{-1} (e^* + f^*) \rangle_m = \langle 2^{-1} (7+6) \rangle_{13} = 0 \]

\[f = \langle 2^{-1} r (f^* - e^*) \rangle_m = \langle 7 \times 5 \times (6-7) \rangle_{13} = 4 \]

Thus \(e+jf = \langle (a+jb)(c+jd) \rangle_{13} = 0+j4 \).

Double check:

\[\langle (5+j6)(7+j8) \rangle_{13} = \langle 5 \times 7 - 6 \times 8 \rangle_{13} + j \langle 5 \times 8 + 6 \times 7 \rangle_{13} \]

\[= \langle -13 \rangle_{13} + j \langle 82 \rangle_{13} = 0+j4 \]
B-1 Multi-Moduli QRNS Systems with Coprime Moduli

One can design multi-moduli QRNS systems based on moduli sets

\[R = \{m_1, m_2, \ldots, m_L \} \]

The mathematical requirement is that the moduli \(m_1, m_2, \ldots, m_L \) must be pairwise relatively prime and also in agreement with theorem 4.

Due to the fact that hardware simplicity is achieved when using the attractive moduli forms \(2^{n_1+1}, 2^{n_2}-1, 2^{n_3} \), only these forms will be considered here. Unfortunately, only forms \(2^{n+1} \) with \(n \) being even are allowed. Forms \(2^{n_1+1} \) with \(n_1 \) being odd, as well as forms \(2^{n_2}-1 \) and \(2^{n_3} \) are not appropriate for QRNS. Theorem 4 dictates that for a modulus \(m \) to be appropriate for QRNS, each of its
prime factors must be of form $4k+1$. Therefore, m must also be of form $4k+1$. However, neither 2^{n+3} nor 2^{n-1} can be of form $4k+1$. Regarding numbers 2^{n+1}, will n_1 being odd, they all get divided by 3 (see lemma 1) while the prime # 3 is not of form $4k+1$.

Consider a complex number $a+jb$ with $a \in \mathbb{Z}_m$, $b \in \mathbb{Z}_m$ and $m=2^{n+1}$ with n being an even integer. Then $r=2^{\frac{n}{2}}$ is a root of $x^2+1=0$ in $\mathbb{Z}_{2^{n+1}}$ (observe that $x^2+1 \equiv (2^{\frac{n}{2}})^2 + 1 \equiv 1+1 = 0$).

The QRNS mapping is then described by
\[a+jb \xrightarrow{QRNS} (a^*, b^*) \]
where
\[a^* = <a+2^{\frac{n}{2}}b>_{2^{n+1}} \quad \text{and} \quad b^* = <a-2^{\frac{n}{2}}b>_{2^{n+1}} \quad (8) \]

The inverse QRNS mapping is given by
\[(a^*, b^*) \xrightarrow{QRNS^{-1}} a+jb \]
where

\[a = \left\langle -2^{n-1} (a^* + b^*) \right\rangle_{2^{n+1}} \]
(9)

\[b = \left\langle 2^{\frac{n-1}{2}} (b^* - a^*) \right\rangle_{2^{n+1}} \]
(10)

Equations (8) - (10) dictate that if \(m = 2^{n+1} \) (n even), the QRNS mapping and inverse mapping rely on additions and multiplications by powers of 2. Such multiplications by powers of 2 require rotations and complement operations if diminished-1 representations of numbers are used.

- Moduli Selection

Since the only allowed attractive forms are \(2^{n+1} \) (n even), any number of moduli of this form can be chosen as long as they belong to different \(S_d \) sets with \(d \geq 2 \) (see \(S_d \) sets of (1), (2) and theorem 1). Of course, adjacent moduli must be
as close as possible to one another so
that the QRNS system is balanced.
A balanced 3-moduli QRNS set is
\[A = \{ m_1, m_2, m_3 \} = \{ 2^{n-2} + 1, 2^n + 1, 2^{n+2} + 1 \} \tag{11} \]
where \(n = 4k+2, \ k = 1, 2, 3, \ldots \).
Here \(m_2 \in S_2 \) while \(m_1 \) and \(m_3 \) belong
to two different sets \(S_d \) and \(S_{d'} \) where
\(d > 2, d' > 2 \) and \(d \neq d' \) (see explanations
following set \(P \) of equation (3)). Also,
set \(A \) is the most balanced 3-moduli
set as the binary exponents of adjacent
moduli differ by two; (the exponents are even).
Set \(A \) can be expanded into set \(B \)
\[B = \{ m^*, m_1, m_2, m_3 \} \]
\[= \{ 2^{n-6} + 1, 2^{n-2} + 1, 2^n + 1, 2^{n+2} + 1 \} \tag{12} \]
where \(n = 8k+6, \ k = 1, 2, 3, \ldots \).
Again, \(m_2 \in S_2 \) while \(m_1 \) and \(m_3 \) belong to two different sets \(S_d \) and \(S_{d'} \) where \(d > 2, d' > 2, d \neq d' \). The restriction \(n = 8k + 6 \) ensures that \(2^{n-6} + 1 \) and \(2^{n+2} + 1 \) do not belong to set \(S_3 \). Therefore, the four moduli of set \(B \) belong to four different \(S_d \) sets and according to theorem 1 they are pairwise relatively prime.

Adding one or two more moduli to set \(B \), one gets the sets \(C \) and \(D \)

\[
C = \{ 2^{n-14} + 1, 2^{n-6} + 1, 2^{n-2} + 1, 2^n + 1, 2^{n+2} + 1 \} \quad (13)
\]

where \(n = 16k + 14, k = 1, 2, 3, \ldots \)

\[
D = \{ 2^{n-30} + 1, 2^{n-14} + 1, 2^{n-6} + 1, 2^{n-2} + 1, 2^n + 1, 2^{n+2} + 1 \} \quad (14)
\]

where \(n = 32k + 30, k = 1, 2, 3, \ldots \).

Let \(DR_A, DR_B, DR_C, DR_D \) be the dynamic ranges achieved by sets \(A, B, C, D \). Then

\[
\begin{align*}
DR_A & = 3n \text{ bits,} \\
DR_B & = 4n - 6 \text{ bits,} \\
DR_C & = 5n - 20 \text{ bits,} \\
DR_D & = 6n - 50 \text{ bits.}
\end{align*}
\]
A comparison between sets A, B, C, D results in the following observations:

1. Sets A, B, C, D are the most balanced 3-, 4-, 5-, 6-moduli QRNS sets with relatively prime moduli of forms 2^n+1.

2. All sets imply the same speed performance (largest modulus is $2^{n+2}+1$).

3. Regarding their dynamic ranges, $D_R^B > D_R^A$ for $n > 6$, $D_R^C > D_R^B$ for $n > 14$, $D_R^D > D_R^C$ for $n > 30$.

4. The differences in the binary exponents between the largest and the smallest moduli for sets A, B, C, D are 4, 8, 16, and 32 respectively. Thus, sets A and B imply more balanced QRNS arithmetic than sets C and D.

5. The choices of n are more restricted for sets C and D when compared to the choices of n for sets A and B.
• The Big Problem:

From the above observations, it is clear that for QRNS sets with more than four moduli of form 2^n+1 (n even), selecting pairwise relatively prime moduli creates problems. This is due to the fact that as the number of moduli increases, the selection process becomes less flexible (i.e., severe restrictions are placed on the choices of n). For example, set D is defined for $n = 62, 94, 126, \ldots$. These values of n are very restricted and they also force the dynamic ranges to be unrealistically large, implying impractical QRNS systems. In addition, sets with five or more moduli result in very unbalanced QRNS arithmetic.

• Question: Is there any solution for the above mentioned problem??

• Answer: YES

• Question: So what is the solution?

• Answer: Go to next page →
Multi-Moduli QRNS Systems with Noncoprime Moduli of forms 2^{n+1}

Here a solution to the above mentioned problem is offered by considering QRNS systems with noncoprime moduli of forms 2^{n+1}. The interested reader can find more information on this subject in the following reference:

References

A theorem follows which provides the mathematical basis for the current subject.
Theorem 5: Consider two numbers

\[N_{d,k} = 2^{d-1}(2k+1) + 1 \quad \text{and} \quad N_{d,k'} = 2^{d-1}(2k'+1) + 1 \]

belonging to the same \(S_d \) set (see \(S_d \) sets of eqs. (1), (2)). Let

\[N_{d,0} = 2^{d-1} + 1 \]

be the first number in set \(S_d \). Then the numbers \(\frac{N_{d,k}}{N_{d,0}} \) and \(\frac{N_{d,k'}}{N_{d,0}} \) are relatively prime if and only if \(2k+1 \) and \(2k' + 1 \) are relatively prime.

Example 3: Consider the numbers \(2^{10}+1 \), \(2^{14}+1 \), \(2^{18}+1 \), \(2^{22}+1 \), \(2^{26}+1 \). All these five numbers belong to the set \(S_2 \). Their binary exponents are 10, 14, 18, 22, 26. The odd parts of these exponents are 5, 7, 9, 11, 13. These five numbers
5, 7, 9, 11, 13 are pairwise relatively prime. Therefore, according to theorem 5, the numbers \(\frac{2^{10}+1}{2^2+1} \), \(\frac{2^{14}+1}{2^6+1} \), \(\frac{2^{18}+1}{2^9+1} \) are also pairwise relatively prime.

Theorems 1 and 5 dictate that multimoduli QRNS sets can be constructed using moduli from different \(S_d \) sets as well as from the same \(S_d \) set \((d \geq 2)\).

The design methodology for constructing multimoduli QRNS systems is described by the following steps:

1. Moduli of the form \(m_i = 2^{n_i}+1 \) (\(n_i \) even) are chosen from the same \(S_d \) set as well as from different \(S_d \) sets \((d \geq 2)\). The moduli chosen from the same \(S_d \) set must be in agreement with Theorem 5 in the sense that the odd parts of their exponents should be pairwise relatively prime.
Of course, adjacent moduli must be as close as possible to one another so that the QRNS system is balanced.

2. All weighted to RNS conversions, QRNS mappings, QRNS processing, and inverse QRNS mappings are performed using set

\[Q = \{ m_1, m_2, \ldots, m_L \} \quad (15) \]

where \(m_i = 2^{n_i} + 1 \) (na even). Set \(Q \) consists of nonrelatively prime moduli and since all of them are of the attractive form \(2^{n_i} + 1 \), the above mentioned transactions rely on simple hardware.

3. The RNS to weighted conversion is performed using set

\[Q' = \{ m_1', m_2', \ldots, m_L' \} = \left\{ \frac{m_1}{c_1}, \ldots, \frac{m_L}{c_L} \right\} \quad (16) \]

Set \(Q' \) consists of pairwise relatively prime integers, the product of which defines the actual dynamic range of the QRNS system.
The scale-down factors c_i are dictated by theorem 5. Each c_i is either 1 or the first number of some S_d set. The Chinese Remainder Theorem (CRT) reconstruction for converting the RNS vector (Z_1, Z_2, \ldots, Z_L) into its weighted form using set Q' is shown by

$$Z = \left< \sum_{i=1}^{L} \left< Z_i^\prime N_i^\prime \right>_{m_i^\prime} M_i^\prime \right>_M,$$

where

$$m_i^\prime = \frac{m_i}{c_i}, \quad M^\prime = \prod_{i=1}^{L} m_i^\prime, \quad M_i^\prime = \frac{M^\prime}{m_i^\prime},$$

$$N_i^\prime = \left< (M_i^\prime)^{-1} \right>_{m_i^\prime}, \quad j = 1, 2, \ldots, L.$$
Set A_1 is an expansion of set A of (11) in the sense that it includes the extra modulus $m_0 = 2^{n-4} + 1$. The restriction $n = 4k+2$ implies that $m_0, m_2 \in S_2$ (see property 2). Therefore, m_0, m_2 are not relatively prime (see theorem 1). The binary exponents of m_0, m_2 are $n-4 = 4k-2$, $n=4k+2$ while the odd parts of these exponents are $\frac{n-4}{2} = 2k-1$ and $\frac{n}{2} = 2k+1$ which are relatively prime. Therefore $m_0' = \frac{m_0}{2^2+1} = \frac{m_0}{5}$ and $m_2' = \frac{m_2}{2^2+1} = \frac{m_2}{5}$ are also relatively prime (see theorem 5). The set A_1 is the most balanced four-moduli QRNS set since the even binary exponents of adjacent moduli differ by two. The actual dynamic range achieved by set A_1 of (18) is defined by $\frac{m_0}{5} \times m_1 \times \frac{m_2}{5} \times m_3 \equiv 2^{4n-9}$ or

$$DR_{A_1} = 4n-9 \text{ bits} \quad (19).$$

Adding one more modulus to set A_1 of (18) yields set A_2.
$A_2 = \{ 2^{n-8} + 1, 2^{n-4} + 1, 2^{n-2} + 1, 2^n + 1, 2^{n+2} + 1 \}$ \hspace{1cm} (20)

where $n = 4k+2$, $k = 3, 4, 5, \ldots$.

Here, $2^{n-8} + 1, 2^{n-4} + 1, 2^n + 1$ belong to set S_2, while $\frac{n-8}{2} = 2k-3, \frac{n-4}{2} = 2k-1, \frac{n}{2} = 2k+1$ are relatively prime in pairs. Theorem 5 then dictates that $\frac{2^{n-8} + 1}{5}, \frac{2^{n-4} + 1}{5}, \frac{2^n + 1}{5}$ are also pairwise relatively prime. The actual dynamic range achieved by set A_2 is

$$DR_{A_2} = 5n-19 \text{ bits} \hspace{1cm} (21)$$

Expanding set B of (12) by one or two more moduli yields sets B_1, B_2 where

$B_1 = \{ 2^{n-6} + 1, 2^{n-4} + 1, 2^{n-2} + 1, 2^n + 1, 2^{n+2} + 1 \}$ \hspace{1cm} (22)

$B_2 = \{ 2^{n-8} + 1, 2^{n-6} + 1, 2^{n-4} + 1, 2^{n-2} + 1, 2^n + 1, 2^{n+2} + 1 \}$ \hspace{1cm} (23)

where $n = 8k+6$, $k = 1, 2, 3, \ldots$; for both B_1, B_2.

The noncoprime moduli in each of the sets B_1 and B_2 belong to set S_2. Also, sets B_1, B_2 are the most balanced 5-moduli and 6-moduli QRTS.
sets with moduli of forms 2^{n+1} (the even binary exponents of adjacent moduli differ by two in both sets B_1 and B_2). The actual dynamic ranges achieved by sets B_1, B_2 are

$$DR_{B_1} = 5n - 15 \text{ bits} \quad (24),$$

$$DR_{B_2} = 6n - 25 \text{ bits} \quad (25).$$

To see the benefits obtained by using multimoduli QRNS sets with noncoprime moduli of forms 2^{n+1} (n even) consider comparing the moduli sets C, A_2, B_1 of equations (13), (20), (22). The following hold true:

1. The above three sets are 5-moduli sets.
2. These three sets imply the same speed performance (largest modulus is 2^{n+2}).
3. The set C (which contains non coprime moduli) achieves smaller dynamic range as compared to the ranges achieved by the noncoprime moduli sets A_2, B_1.

Just see that \(DR_C = 5n - 20 \) bits,
\(DR_{A_2} = 5n - 19 \) bits, \(DR_{B_1} = 5n - 15 \) bits

4. Set \(C \) is the most unbalanced when compared to sets \(A_2 \) and \(B_1 \). Just see that the differences in the binary exponents between the largest and the smallest moduli for sets \(C, A_2, B_1 \) are 16, 10, 8.

5. The choices of \(n \) are much more restricted for set \(C \) when compared to the choices of \(n \) for sets \(A_2, B_1 \). See that set \(C \) is defined for \(n = 30, 46, 62, 78, 94, \ldots \); set \(A_2 \) is defined for \(n = 14, 18, 22, 26, 30, 34, \ldots \); set \(B_1 \) is defined for \(n = 14, 22, 30, 38, 46, \ldots \).

The advantages obtained by using multi-moduli QRNS sets with noncoprime moduli are even more obvious when comparing the 6-moduli sets \(D \) (which contains...
coprime moduli) and B_2 (which consists of noncoprime moduli). Both sets D and B_2 imply the same speed-performance (largest modulus is 2^{n+1}) and therefore the comparison is fair. Set B_2 enjoys a dynamic range that is 2^{25} times larger than the dynamic range achieved by set D (see that $DR_D = 6n - 50$ bits; $DR_{B_2} = 6n - 25$ bits). Set D is very unbalanced (largest exponent - smallest exponent = 32) while set B_2 is the most balanced 6-moduli QRNS set with moduli of forms $2^{n+1}i$ (the even binary exponents of adjacent moduli differ by two). Finally, the choices of n are much more restricted for set D when compared to choices of n for set B_2. See that set D is defined for $n = 62, 94, 126, 158, 190, \ldots$ while set B_2 is defined for $n = 14, 22, 30, 38, 46, \ldots$.

Some More Good News:

The good news so far is that by using the new theory (the S_i sets of (1), (2) and theorems 1 and 5) it was possible to construct multi-
moduli QRNS systems based on sets with noncoprime moduli of attractive forms 2^{n+1}.

The benefits obtained were very large dynamic ranges, very balanced arithmetic, flexible moduli choices, and still preserving the attractive moduli forms $m=2^{n+1}$ for the internal processing.

Question: Is this the end of the good news??

Answer: BUT OF COURSE NOT!!!

Question: So, what is the next good news?

Answer: The next good news is that by using the newly developed theory (the S_d sets of (1), (2) and the Theorems 1, 2, 3, 5) it has been possible to construct multi-moduli RNS (not QRNS) systems based on sets with noncoprime moduli pairs of the very attractive form $2^{n_i-1}, 2^{n_i+1}$.

This new class of multimoduli RNS systems
is based on sets of form

$$P = \left\{ m_1, m_1^*, m_2, m_2^*, \ldots, m_L, m_L^* \right\} = $$$$= \left\{ 2^{n_1} - 1, 2^{n_1+1} + 1, 2^{n_2} - 1, 2^{n_2+1} + 1, \ldots, 2^{n_L} - 1, 2^{n_L+1} + 1 \right\}$$

(26)

where the exponents n_1, n_2, \ldots, n_L must be as close as possible to one another so that RNS arithmetic is as balanced as possible.

Definition 1: The numbers $m_i = 2^{n_i} - 1$ and $m_i^* = 2^{n_i} + 1$ are called conjugates of each other.

The new RNS systems which rely on pairs of conjugate moduli result in hardware-efficient 2-level implementations for the weighted-to-RNS and RNS-to-weighted conversions, achieve very large dynamic ranges and imply fast and efficient RNS internal processing. When compared to conventional systems of the same number of moduli and the
Same dynamic range, the new systems offer the following benefits: 1). Hardware savings of 25% to 40% for the weighted-to-RNS conversion. 2). A reduction of over 80% to 90% in the complexity of the final Chinese Remainder Theorem (CRT) involved in the RNS-to-weighted conversion. Thus, significant compromises between large dynamic ranges, fast internal processing and low complexity are achieved by these new systems.

- The interested reader can find more information on this subject in the following references:
References

[4]. A. Skavantzos and M. Abdallah,
"Novel Residue Arithmetic Processors
for High Speed Digital Signal Processing",
in Proceedings of the Thirty Second
Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, CA,

[5]. A. Skavantzos and M. Abdallah,
"Implementation issues of the
two-level residue number system with
pairs of conjugate moduli", IEEE
Transactions on Signal Processing,
In this handout, the subject of error detection and error correction in Residue Number Systems is studied.

Consider an RNS system based on moduli m_1, m_2, \ldots, m_L where the moduli are pairwise relatively prime integers. To achieve error detection/error correction, some redundant moduli must be added to the system. Let the redundant moduli be $m_{L+1}, m_{L+2}, \ldots, m_{L+r}$. Such a system is then called Redundant Residue Number System (RRNS). For such a system, all the $L+r$ moduli $m_1, m_2, \ldots, m_L, m_{L+1}, \ldots, m_{L+r}$ are pairwise relatively prime. Some definitions follow:

- The moduli m_1, m_2, \ldots, m_L are called non-redundant moduli.
- The moduli $m_{L+1}, m_{L+2}, \ldots, m_{L+r}$ are called redundant moduli.
• The dynamic range achieved by the non redundant moduli is called legitimate dynamic range. This is to say that:

\[
\text{Legitimate dynamic range} = [0 \ M-1] \\
\text{where } M = m_1 \times m_2 \times \cdots \times m_L
\]

• The total dynamic range is:

\[
\text{Total dynamic range} = [0 \ M_T-1] \\
\text{where } M_T = m_1 \times m_2 \times \cdots \times m_L + r
\]

• The illegitimate range is:

\[
\text{Illegitimate range} = [M \ M_T-1]
\]

Let a number \(X \) have the following RRNS representation:

\[
X \xrightarrow{\text{RRNS}} (X_1, X_2, \ldots, X_L, X_{L+1}, \ldots, X_{L+r})
\]

where \(X_i = \langle X \rangle_{m_i} \) \(i = 1, 2, \ldots, L+r \).

The elements \(X_i \) are the residues or residue digits of \(X \).
By error detection/error correction in RNS systems, we mean techniques by which residue digits in error (faulty residue digits) can be detected, located and corrected. The following theorem is in place:

Theorem 1: A Redundant Residue Number System (RRNS) with \(r \) redundant moduli will allow detection of \(r \) residue digits in error or correction of \(\left\lfloor \frac{r}{2} \right\rfloor \) residue digits in error [1]–[2]. Here, \(\left\lfloor \cdot \right\rfloor \) denotes the floor function.

An obvious implication of Theorem 1 is that to be able to correct a single residue digit in error, the number of redundant moduli must be \(r = 2 \). (See that \(\left\lfloor \frac{2}{2} \right\rfloor = 1 \).
Error detection and correction of a single residue digit in error.

Consider a Redundant Residue Number System (RRNS) with \(L \) non-redundant moduli and \(r=2 \) redundant moduli. Let the non-redundant moduli be \(m_1, \ldots, m_L \) while the redundant ones are \(m_{L+1}, m_{L+2} \). Here, the \(L+2 \) moduli \(m_1, \ldots, m_L, m_{L+1}, m_{L+2} \) are pairwise relatively prime integers. Also, each redundant modulus is larger than each non-redundant modulus. Let a number \(X \) have the following residue-digit representation in this RRNS:

\[
X \xrightarrow{\text{ RRNS }} (X_1, \ldots, X_L, X_{L+1}, X_{L+2})
\]

where \(X_i = \langle X \rangle_{m_i} \), \(i = 1, 2, \ldots, L, L+1, L+2 \).

Assume the following:

(i). Assume that the number \(X \) belongs to the legitimate range. This means that overflow of the legitimate range has not occurred. This can easily be accomplished by overflow prevention schemes.
(ii). Assume that at most one residue digit can be in error (no more than one \(X_i \) can be in error, where \(i = 1, \ldots, L+2 \)).

(iii). Assume that the hardware for converting the RNS into the weighted system is error free j (it functions correctly).

• The procedure for error detection/error correction of a single residue digit being in error is as follows:

1. Using the moduli set \(\{m_1, m_2, \ldots, m_L, m_{L+1}, m_{L+2} \} \), convert the residue representation \((X_1, X_2, \ldots, X_L, X_{L+1}, X_{L+2}) \) into its weighted form \(X \). The Chinese Remainder Theorem (CRT) or the Mixed Radix Conversion (MRC) can be used for this conversion. If the obtained number \(X \) belongs to the illegitimate range, then an error has occurred.

Otherwise, no error occurred.
(2). To locate and correct a residue digit in error, (if an error occurred), compute the \(m_i \) - projections of \(X_i \), \(i = 1, 2, \ldots, L, L+1, L+2 \). Let the \(m_i \) - projection of \(X \) be denoted as \(X_i^* \). It is a well known fact that in case of a single residue digit being in error, one and only one projection will belong to the legitimate range while all the other projections will belong to the illegitimate range [3],[2]. If \(X_i^* \) (the \(m_i \) - projection of \(X \)) belongs to the legitimate range, then the error occurred in the \(i \) - th residue digit. In this case, the correct value of \(X \) is \(X_i^* \) and the correct residue digit \(X_i \) is \(X_i = \langle X_i^* \rangle_{m_i} \).

- **Question:** What is the definition of \(X_i^* \)?
- **Answer:**
 \(X_i^* = \text{The } m_i \text{- projection of } X = \)
Result of converting the residue representation \((X_1, X_2, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{L+2})\) into a weighted number using the moduli set \(\{m_1, m_2, \ldots, m_{i-1}, m_{i+1}, \ldots, m_{L+2}\}\). The CRT or MRC can be used for such conversions.

*** NOTE: As seen, in computing \(X_i^*\), all the residue-digits except \(X_i\) participate. Also, all the moduli except \(m_i\) are used.

Example 1: This example will demonstrate the procedure for detecting, locating and correcting a single residue digit becoming faulty.

Consider a Redundant RNS (RNS) based on set

\[
S = \{m_1, m_2, m_3, m_4, m_5\} = \{5, 6, 7, 11, 13\}
\]
Here, the non redundant moduli are \(m_1, m_2, m_3 \) while the redundant moduli are \(m_4 \) and \(m_5 \).

The legitimate, total and illegitimate ranges are:

- Legitimate range = \([0 \ (5 \times 6 \times 7) - 1]\) = \([0 \ 209]\).
- Total range = \([0 \ (5 \times 6 \times 7 \times 11 \times 13) - 1]\) = \([0 \ 30,029]\).
- Illegitimate range = \([210 \ 30,029]\).

Consider performing (using the above RRNS) the computation \(Z = X + Y \), where \(X = 128 \) and \(Y = 69 \). As seen, the expected result \(Z = X + Y = 128 + 69 = 197 \) belongs to the legitimate range; (overflow of the legitimate range has not occurred).

Converting \(X \) and \(Y \) into the above RRNS yields:
\[
X \xrightarrow{RRNS} (X_1, X_2, X_3, X_4, X_5) = \\
= (\langle 128 \rangle_5, \langle 128 \rangle_6, \langle 128 \rangle_7, \langle 128 \rangle_{11}, \langle 128 \rangle_{13}) \\
= (3, 2, 2, 7, 11).
\]

\[
Y \xrightarrow{RRNS} (Y_1, Y_2, Y_3, Y_4, Y_5) = \\
= (\langle 69 \rangle_5, \langle 69 \rangle_6, \langle 69 \rangle_7, \langle 69 \rangle_{11}, \langle 69 \rangle_{13}) \\
= (4, 3, 6, 3, 4).
\]

Then
\[
Z = X + Y \xrightarrow{RRNS} (Z_1, Z_2, Z_3, Z_4, Z_5) = \\
= (\langle 3+4 \rangle_5, \langle 2+3 \rangle_6, \langle 2+6 \rangle_7, \langle 7+3 \rangle_{11}, \langle 1+4 \rangle_{13}) = (2, 5, 5, 10, 2)
\]
or
\[
Z \xrightarrow{RRNS} (Z_1, Z_2, Z_3, Z_4, Z_5) = (2, 5, 5, 10, 2)
\]

What happened??
Let's now see if the residue representation \((Z_1, Z_2, Z_3, Z_4, Z_5) = (2, 5, 5, 10, 2)\) is error-free or not.

Using the moduli set \(\{m_1, m_2, m_3, m_4, m_5\} = \{5, 6, 7, 11, 13\}\), we convert the residue representation \((Z_1, Z_2, Z_3, Z_4, Z_5) = (2, 5, 5, 10, 2)\) into its weighted form \(Z\). The computations yielding \(Z\) are shown in the Appendix at the end of this handout if the CRT is used.

The obtained result of this conversion is \(Z = 13,067\). Since \(Z = 13,067\) belongs to the illegitimate range, an error has occurred; this is error detection.
To now locate and correct the error, the \(m_i \)-projections of \(Z \) must be computed \(j \) (\(i = 1, 2, 3, 4, 5 \)). These projections are denoted by \(Z_1^*, Z_2^*, Z_3^*, Z_4^*, Z_5^* \). The computations of these projections are also shown in the appendix and the CRT is used again.

As a reminder, the projection \(Z_1^* \) is the result of converting \((Z_2, Z_3, Z_4, Z_5) \) into its weighted form using set \(\{m_2, m_3, m_4, m_5\} \), the projection \(Z_2^* \) is the result of converting \((Z_1, Z_3, Z_4, Z_5) \) into its weighted form using set \(\{m_1, m_3, m_4, m_5\} \) etc... These projections are found to be:

\[
\begin{align*}
Z_1^* & = 1,055 \; j \; (Z_1^* \text{ belongs to illegitimate range}) \\
Z_2^* & = 3,057 \; j \; (Z_2^* \text{ belongs to illegitimate range}) \\
Z_3^* & = 197 \; j \; (Z_3^* \text{ belongs to legitimate range}) \\
Z_4^* & = 2,147 \; j \; (Z_4^* \text{ belongs to illegitimate range}) \\
Z_5^* & = 1,517 \; j \; (Z_5^* \text{ belongs to illegitimate range})
\end{align*}
\]
Since \(Z_3^* \) belongs to the legitimate range, all the remaining projections belong to the illegitimate range, the error occurred in the residue digit \(Z_3 \). In this case the correct value of \(Z \) is \(Z = Z_3^* = 197 \) and the correct residue-digit \(Z_3 \) is \(Z_3 = \left< Z_3^* \right>_m = \left< 197 \right>_7 = 1 \) or \(Z_3 = 1 \).

Problem: Consider a Redundant RNS (RRNS) based on moduli set

\[S = \{ m_1, m_2, m_3, m_4 \} = \{ 3, 4, 5, 7 \}. \]

Here, the non-redundant moduli are \(m_1, m_2 \) while the redundant moduli are \(m_3, m_4 \).

Let a number \(X \) have the following residue-digit representation in this RRNS:

\[X \rightarrow (X_1, X_2, X_3, X_4) = (1, 2, 3, 3) \]

where of course \(X_i = \left< X \right>_{m_i}, \ i = 1, 2, 3, 4. \)
Let the conversion of \((X_1, X_2, X_3, X_4)\) into the weighted system using set \(\{m_1, m_2, m_3, m_4\}\) yield the number \(X = 178\).

Let the \(m_i\)-projections of \(X\) be \(X_1^* = 38, X_2^* = 73, X_3^* = 10\) and \(X_4^* = 58\), respectively.

Answer the following questions:

1. What are the legitimate, total and illegitimate ranges for this R\(\text{RNS}\)?
2. Is the given residue representation \((X_1, X_2, X_3, X_4) = (1, 2, 3, 3)\) error-free or not? Justify your answer.
3. If the given residue representation \((X_1, X_2, X_3, X_4) = (1, 2, 3, 3)\) is not error-free, which residue digit is in error? What is the correct value of the residue-digit in error? What is the correct value of \(X\)?

Assumptions:

(i) Overflow of the legitimate range cannot occur; (it is prevented).

(ii) At most one residue digit can be in error.

(iii) The hardware for converting the R\(\text{RNS}\) into the weighted system is error-free.
Answer:

1. The ranges are:
 Legitimate range = $[0, (3\times4)-1] = [0, 11]$
 Total range = $[0, (3\times4\times5\times7)-1] = [0, 419]$
 Illegitimate range = $[12, 419]$

2. The residue representation $(X_1, X_2, X_3, X_4) = (1, 2, 3, 3)$ is not error-free (an error has occurred). This is due to the fact that $X = 178$ belongs to the illegitimate range.

3. Since the projection belonging to the legitimate range is $X_3^* = 10$, (all the other projections belong to the illegitimate range), the residue digit $X_3 = 3$ is in error. The correct value of X_3 is $X_3 = \langle X_3^* \rangle = \langle 10 \rangle_5 = 0$, or $X_3 = 0$.

 The correct value of X is $X = X_3^* = 10$.

References:

Appendix

In this appendix, the computations relating to example 1 (see pages 7–12) for example 1 are shown.

At first, using the moduli set \(\{ m_1, m_2, m_3, m_4, m_5 \} = \{ 5, 6, 7, 11, 13 \} \), the residue representation \((Z_1, Z_2, Z_3, Z_4, Z_5) = (2, 5, 5, 10, 2)\) is converted into its weighted form \(Z\). Using the Chinese Remainder Theorem (CRT) one gets:

\[
Z = \langle \langle Z_1 x (m_2 x m_3 x m_4 x m_5)^{-1} \rangle_m \rangle x m_2 x m_3 x m_4 x m_5
+ \langle \langle Z_2 x (m_1 x m_3 x m_4 x m_5)^{-1} \rangle_m \rangle x m_1 x m_3 x m_4 x m_5
+ \langle \langle Z_3 x (m_1 x m_2 x m_4 x m_5)^{-1} \rangle_m \rangle x m_1 x m_2 x m_4 x m_5
+ \langle \langle Z_4 x (m_1 x m_2 x m_3 x m_5)^{-1} \rangle_m \rangle x m_1 x m_2 x m_3 x m_5
+ \langle \langle Z_5 x (m_1 x m_2 x m_3 x m_4)^{-1} \rangle_m \rangle x m_1 x m_2 x m_3 x m_4 \rangle x m_1 x m_2 x m_3 x m_5
\]
\[
\begin{align*}
&= \left<2 \times (6 \times 7 \times 11 \times 13)^{-1}\right> \times 6 \times 7 \times 11 \times 13 + \\
&\quad + \left<5 \times (5 \times 7 \times 11 \times 13)^{-1}\right> \times 5 \times 7 \times 11 \times 13 + \\
&\quad + \left<5 \times (5 \times 6 \times 11 \times 13)^{-1}\right> \times 5 \times 6 \times 11 \times 13 + \\
&\quad + \left<10 \times (5 \times 6 \times 7 \times 13)^{-1}\right> \times 5 \times 6 \times 7 \times 13 + \\
&\quad + \left<2 \times (5 \times 6 \times 7 \times 11)^{-1}\right> \times 5 \times 6 \times 7 \times 11
\end{align*}
\]
\[
\left<\begin{array}{c}
5 \times 6 \times 7 \times 11 \times 13
\end{array}\right>
\]
\[
= \left<2 \times 1\right> \times 6006 + \left<5 \times 1\right> \times 5005 + \left<5 \times 6\right> \times 4290 + \\
\left<10 \times 6\right> \times 2730 + \left<2 \times 3\right> \times 2310
\]
\[
= \left<2 \times 6006 + 5 \times 5005 + 2 \times 4290 + 5 \times 2730 + 6 \times 2310\right>
\]
\[
= \left<73,127\right> \equiv 13,067 \mod 30,030
\]
\[
Z = 13,067
\]

Next, the \(m_i\)-projections of \(Z\) are computed \((i=1, 2, 3, 4, 5)\). The projections are denoted by \(Z_1^*, \ldots, Z_5^*\) and the CRT is used to compute them.
The projection Z_1^* is the result of converting $(Z_2, Z_3, Z_4, Z_5) = (5, 5, 10, 2)$ into its weighted form using set $\{m_2, m_3, m_4, m_5\} = \{6, 7, 11, 13\}$. Using the CRT one gets:

$$Z_1^* = \langle \langle Z_2 \times (m_3 \times m_4 \times m_5)^{-1} \rangle_{m_2} \rangle \times m_3 \times m_4 \times m_5$$

$$+ \langle \langle Z_3 \times (m_2 \times m_4 \times m_5)^{-1} \rangle_{m_3} \rangle \times m_2 \times m_4 \times m_5$$

$$+ \langle \langle Z_4 \times (m_2 \times m_3 \times m_5)^{-1} \rangle_{m_4} \rangle \times m_2 \times m_3 \times m_5$$

$$+ \langle \langle Z_5 \times (m_2 \times m_3 \times m_4)^{-1} \rangle_{m_5} \rangle \times m_2 \times m_3 \times m_4$$

Substituting in the above the given numerical values of $Z_2, Z_3, Z_4, Z_5, m_2, m_3, m_4, m_5$ one gets

$$Z_1^* = \langle \langle 5 \times 5 \rangle_6 \times 1001 + \langle 5 \times 2 \rangle_7 \times 858 \rangle \times m_3 \times m_4 \times m_5$$

$$+ \langle \langle 10 \times 8 \rangle_{11} \times 546 + \langle 2 \times 2 \rangle_{13} \times 462 \rangle_{6006} \times m_3 \times m_4 \times m_5$$

or

$$Z_1^* = 1.055$$
• The projection Z_2^* is the result of converting $(Z_1, Z_3, Z_4, Z_5) = (2, 5, 10, 2)$ into its weighted form using set $\{m_1, m_3, m_4, m_5\} = \{5, 7, 11, 13\}$. Using the CRT one gets:

$$Z_2^* = \langle \langle Z_1 \times (m_3 \times m_4 \times m_5)^{-1} \rangle_{m_1} \times m_3 \times m_4 \times m_5 + \langle Z_3 \times (m_1 \times m_4 \times m_5)^{-1} \rangle_{m_3} \times m_1 \times m_4 \times m_5 + \langle Z_4 \times (m_1 \times m_3 \times m_5)^{-1} \rangle_{m_4} \times m_1 \times m_3 \times m_4 + \langle Z_5 \times (m_1 \times m_3 \times m_4)^{-1} \rangle_{m_5} \times m_1 \times m_3 \times m_4 \rangle_{m_1 \times m_3 \times m_4 \times m_5}$$

$$= 3,057 \text{ or } Z_2^* = 3,057$$

• The projection Z_3^* is the result of converting $(Z_1, Z_2, Z_4, Z_5) = (2, 5, 10, 2)$ into its weighted form using set $\{m_1, m_2, m_4, m_5\} = \{5, 6, 11, 13\}$. The CRT yields:

$$Z_3^* = \langle \langle Z_1 \times (m_2 \times m_4 \times m_5)^{-1} \rangle_{m_1} \times m_2 \times m_4 \times m_5 + \langle Z_2 \times (m_1 \times m_4 \times m_5)^{-1} \rangle_{m_2} \times m_1 \times m_4 \times m_5 + \langle Z_4 \times (m_1 \times m_2 \times m_5)^{-1} \rangle_{m_4} \times m_1 \times m_2 \times m_5 + \langle Z_5 \times (m_1 \times m_2 \times m_4)^{-1} \rangle_{m_5} \times m_1 \times m_2 \times m_4 \rangle_{m_1 \times m_2 \times m_4 \times m_5}$$

$$= 197 \text{ or } Z_3^* = 197$$
- The projection Z_4^* is the result of converting $(Z_1, Z_2, Z_3, Z_5) = (2, 5, 5, 2)$ into its weighted form using set $\{m_1, m_2, m_3, m_5\} = \{5, 6, 7, 13\}$. The CRT yields:

$$Z_4^* = \langle \langle Z_1 \times (m_2 \times m_3 \times m_5)^{-1} \rangle \rangle_{m_1} \times m_2 \times m_3 \times m_5$$
$$+ \langle Z_2 \times (m_1 \times m_3 \times m_5)^{-1} \rangle_{m_2} \times m_1 \times m_3 \times m_5$$
$$+ \langle Z_3 \times (m_1 \times m_2 \times m_5)^{-1} \rangle_{m_3} \times m_1 \times m_2 \times m_5$$
$$+ \langle Z_5 \times (m_1 \times m_2 \times m_3)^{-1} \rangle_{m_5} \times m_1 \times m_2 \times m_3$$

$$= 2147 \text{ or } [Z_4^* = 2147].$$

- The projection Z_5^* is the result of converting $(Z_1, Z_2, Z_3, Z_4) = (2, 5, 5, 10)$ into its weighted form using set $\{m_1, m_2, m_3, m_4\} = \{5, 6, 7, 11\}$. The CRT gives:

$$Z_5^* = \langle \langle Z_1 \times (m_2 \times m_3 \times m_4)^{-1} \rangle \rangle_{m_1} \times m_2 \times m_3 \times m_4$$
$$+ \langle Z_2 \times (m_1 \times m_3 \times m_4)^{-1} \rangle_{m_2} \times m_1 \times m_3 \times m_4$$
$$+ \langle Z_3 \times (m_1 \times m_2 \times m_4)^{-1} \rangle_{m_3} \times m_1 \times m_2 \times m_4$$
$$+ \langle Z_4 \times (m_1 \times m_2 \times m_3)^{-1} \rangle_{m_4} \times m_1 \times m_2 \times m_3$$

$$= 1517 \text{ or } [Z_5^* = 1517].$$