
Shuai Hu
 Department of Electronic and Information Engineering

Huazhong University of Science and Technology (HUST)
 Phone: +8613277961460

E-mail: hushuai1987@gmail.com
Address: YY 23#306 HUST, Wuhan,P.R.China

Chronology of Education
 B.Sc, Huazhong University of Science and Technology, Wuhan, China. 2005-present

Major: Electronic and Information Engineering

Awards
 10/2006 Excellent leader, HUST
 10/2007 Student Fellowship, HUST

 10/2008 Excellent academic performance

Experience
 3/2007~Now Discipline in the lab of media and vision technology

 4/2007 Passed the National computer Rank Examination(grade 2)

 9/2007 Passed the National computer Rank Examination(grade 3)

 5/2008 Published a paper concerning H.264 decoding on CISP2008 held by IEEE

and indexed by EI
 6/2008 Took GRE, get score of V400+Q800+W3.0
 9/2008 Took TOEFL, get score of 68
 9/2008 Major GPA in the passed three years is 84

Skills
 Proficient in C , C++ , Assembly language, Matalab, Verilog HDL
 Proficient in H.264 (Video Compress and Decompress)
 Proficient in Tracking in computer vision
 Proficient in Computer Network
 Proficient in Embedded system
 Proficient in listening and oral English

Characters
 Enterprising and likely to introspect

 1

http://www.hust.edu.cn/

 Adjusting quickly to new environments quickly
 Effectively and efficiently using time
 Likely to analyze problems in different angles
 Getting on well with classmates and instructors always

Other Interests
Reading, Tennis, Swim, Movie, Music

 2

Optimization of Memory Allocation for

 H.264/AVC Video Decoder on Digital Signal Processors

Shuai Hu , Zhe Zhang , Mengsu Zhang ,Tao Sheng
Department of Electronics and Information Engineering,

Huazhong University of Science and Technology
hushuai@smail.hust.edu.cn

zhangzhe@smail.hust.edu.cn

Abstract

The computing power of microprocessors has

exponentially increased in the past few decades, so the
support to compute intensive multimedia applications
has increased too. With such improved computing
power, memory subsystem deficiency becomes the
major barrier to support video decoder on the Digital
Signal Processor (DSP). H.264/AVC becomes the next
generation of video codec for embedded systems. In
this paper, our focus is to enhance the decoding
performance of H.264/AVC through memory
optimization for DSP. The experimental results show
that the proposed solutions can improve the
H.264/AVC decoding speed by almost 37%. Also, the
memory optimization method presented in this paper
has been integrated into the developed embedded
H.264/AVC video decoder. The decoder can perform
real time decoding under eight channels of Common
Intermediate Format (CIF) frame size, which is the
typical requirement of networked video surveillance
applications .

1. Introduction

A proverb says: A picture speaks more than a
thousand words. Video messaging, video telephony,
and video conferencing have started to enter the
marketplace over the past several years and are
becoming more and more popular. The demand to run
such video applications on embedded devices is
growing. The future of the embedded systems running
multimedia is video applications. H.264/AVC is the
new video coding standard. It can save 25%-45% and
50%-70% of bitrate compared with MPEG-4
Advanced Simple Profile and MPEG-2, respectively
[1]. Although motion compensated transform coding is
still adopted, many new features are used to achieve

much better compression performance and subjective
quality, such as quarter-pixel Motion Estimation (ME)
with Multiple Reference Frames (MRF) and Variable
Block Sizes (VBS), intra prediction, Context-based
Adaptive Variable Length Coding (CAVLC), and in-
loop de-blocking filter. The rate distortion optimized
mode decision [1] is also included in reference
software to improve rate-distortion efficiency.

Applications lead the architecture of embedded
devices. For many embedded devices, single-processor
implementation is recommended to meet the
application’s size and power consumption requirement
[2]. Due to the improvements in the semi-conductor
industry, the required computational power to
implement such a device is not an issue. However, due
to the growing disparity between the increasing
computation power and the memory speed, the amount
of traffic from CPU to memory leads to a significant
processor/memory speed gap [7]. Also, bus contention
becomes a serious problem for the newly proposed
multi-core processors like Intel Xeon and AMD
Opteron. Using cache(s) may improve the overall
performance by dealing with memory bandwidth
bottlenecks and bus contention problems. Using data
stored in the cache helps cut down bus traffic
significantly. Consider an embedded video application
with multi-channels Common Intermediate Format
(CIF-352×288 pixels), 20-25 frames per second (fps),
and 500 kbps data rate, which could be supported by
Digital Signal Processors (DSP) with eight highly
independent functional units that may take 720M
cycles to run an H.264/AVC decoder. So, a two-level
internal memory organization for DSP is designed to
keep pipeline processing.

The rest of this paper is organized as follows. In
section 2, we introduce the related work. Section 3
presents the H.264 decoder architecture. Section 4
shows the two-level internal memory hierarchy

2008 Congress on Image and Signal Processing

978-0-7695-3119-9/08 $25.00 © 2008 IEEE
DOI 10.1109/CISP.2008.173

71

2008 Congress on Image and Signal Processing

978-0-7695-3119-9/08 $25.00 © 2008 IEEE
DOI 10.1109/CISP.2008.173

71

2008 Congress on Image and Signal Processing

978-0-7695-3119-9/08 $25.00 © 2008 IEEE
DOI 10.1109/CISP.2008.173

71

designed for DSP. Finally, we draw our conclusions in
Section 5.

2. Related work

Generally speaking, there are two aspects affecting
the system the most. One is the computational
complexity, and the other is the communication
between the processor and the memory. In this paper,
we enhance the decoding performance of H.264/AVC
through memory optimization of a digital signal
processor. Some of the previous researches which have
been done in this area are presented in the following
paragraph.

In [3], the authors give an overview of high-level
complexity analysis and memory architecture of
multimedia algorithms. However, if the amount of
computation exceeds the maximum ability of processor,
multi-processor or low complex algorithm should be
considered. In [4], an efficient memory centric design
methodology which completes the computational cost
with a detailed analysis of data transfers and storage is
applied on a simple profile MPEG-4 video decoder.
The study [4] has showed how algorithmic
optimization is an enabling factor for this methodology.
The focus of memory is motivated by the data, which
is the dominated nature of video coding algorithms, i.e.,
the data transfer and storage are the main cost factors
in an efficient realization. Cache behavior of
multimedia and traditional applications was examined
in [5]. The authors in [5] have showed that multimedia
applications exhibit higher data miss rate and
comparable lower instruction miss rate. The problem
related to improving memory hierarchy performance
for multitasking data intensive application was
addressed in [6]. The authors in [6] have used cache
partitioning techniques to find a static task execution
order for inter-task data cache misses. Due to the lack
of freedom in reordering task execution, this method
optimizes the caches more. In this aspect, in this paper,
we present a tradeoff between the coding efficiency
and the complexity. For the second aspect, it is a
common situation that the speed of memory can not
catch the speed of processor. Cache can balance the
mismatch between them. So a two-level on-chip
memory optimization method for DSP is presented in
this paper to keep pipeline processing.

3. H.264/AVC Video

The standardization of video compression
technology is revolution in the broadcast television,
telecommunication, and home entertainment system.
H.263 is standardized by ITU-T (International

Telecommunication Union – Telecommunication
Standardization Sector) in 1995 and it is widely used in
videoconferencing systems. MPEG-4 (Part 2) is
standardized by ISO (International Organization for
Standardization) in 1998 and it enables a new
generation of internet-based video applications. The
groups developed these standards, the ISO Motion
Picture Experts Group (MPEG) and the ITU-T Video
Coding Experts Group (VCEG), have developed new
standard that promises to significantly outperform both
MPEG4 (Part 2) and H.263, providing high-quality,
low bit-rate streaming video. The new standard is
called Advanced Video Coding (AVC) and is widely
known as H.264/AVC or MPEG-4 Part 10 [11].

In 2001, the Joint Video Team (JVT) was formed
including experts from MPEG and VCEG. The main
task of JVT was to develop the draft H.26L (VCEG’s
long-term effort to develop a new standard) into a full
International Standard. In 2003, the final drafting work
on the first version of the new standard was completed.
The outcome is two identical standards: ISO MPEG
standard is MPEG4 Part 10 and ITUT standard is
H.264/AVC.

3.1. H.264/AVC codec

H.264/AVC standard does not explicitly define
CODEC (encoder / decoder pair) like MPEG-4.
Instead, H.264/AVC defines the syntax of an encoded
video bit-stream together with the method of decoding
this bit-stream [12]. The functional elements of an
accommodating encoder and decoder are possible to
include. Figure 1 shows the decoder functionalities.
The functions shown in this figure are likely to be
necessary for compliance. In addition, there is scope
for considerable variation in the structure of the
CODEC. The basic functional elements (such as
prediction, transform, quantization, and entropy
encoding) are little different from previous standards
(MPEG-4 and H.263).

3.2. H.264/AVC decoder

We briefly discuss H.264/AVC decoding algorithm,
our target application for this work. Various
functionalities in H.264/AVC decoder are shown in
Figure 1. The decoder receives an encoded bit-stream
from the Network Abstraction Layer (NAL). The data
elements are entropy decoded and reordered to produce
set of quantized coefficients (X). These are rescaled
and inverse transformed to give D’n. Using the header
information from the bit-stream, the decoder creates
prediction macro-block P, identical to the original
prediction P formed in the encoder. P is added to D’n

727272

to produce uF’n which is filtered to create the decoded
macro-block F’n [12, 13].

Fig.1. H.264/AVC decoder architecture

It is very important that both encoder and decoder

use identical reference frames to create the prediction.
Otherwise, the predictions in encoder and decoder may
be different, leading to an increased error between the
encoder and decoder.

4.Two-level Internal Memory Optimization

In real-time coding system, one serious bottleneck
is the speed mismatch between memory and processor.
One solution is to use cache efficiently. But by
depending only on cache replacement policy by
hardware, the decoder can not reach the top coding
speed. So, we can analyze the data flow to help cache
find out the best mapping position, or manage cache by
ourselves. Compile-time data caching decisions have
much large effect on the performance [9]. The
following parts will introduce the two-level internal
memory structure of DSP and the details of the
memory organization design for H.264 video coding in
turn.

4.1. The Characteristic of TMS320DM642

The TMS320DM642 (DM642) is the first integrated
media processor based on the C64x Very Long
Instruction Word (VLIW) DSP core [10]. The C64x
CPU is optimized for video processing including both
8-way VLIW parallelism and packed data processing
within each functional unit. The CPU is complimented
by a flexible chip-level architecture that maximizes
system options and sustains the core processing
capability. The key elements in the DM642 include:
Two-level cache architecture, an Enhanced DMA
(EDMA) controller, 64-bit external memory interface,
three 20-bit video ports, Ethernet MAC, and so on.
4.2. Two-level Internal Memory Structure

The DM642 utilizes two-level cache architecture as
shown in Fig.2. The first level, called L1, allows three

parallel single-cycle memory accesses (one instruction
fetch and two 64-bit data accesses) by the CPU at
clock rates exceeding 720MHz [10]. This ensures a
strong performance roadmap over time. The L1
Program (L1P) cache is 16 Kbytes and is directly
mapped. The L1 Data (L1D) cache is also 16 Kbytes,
but it is a two-way set associative to account for
multiple input sources. The second level, called L2, is
256 Kbytes and allows large amounts of data to be
brought on-chip. For example, regions of reference
data for motion estimation can be retained on-chip
across multiple blocks minimizing redundant external
I/O. The L2 can be partitioned between cache and
Static Random Access Memory (SRAM). Instructions,
C variables, and random data accesses are typically
cached. Regular data accesses, such as video input and
output, are typically done with EDMA requests and
use mapped L2 SRAM.

P
e
ri

p
he

r
al

s

ED
M
A

C
on

t
ro

ll
e
r

 Fig.2. Two-level cache architecture of DM642

4.3. Optimized Cache Sub-system Design

The optimal memory allocation method is based on
the Cache-SRAM-SDRAM structure. The cache has
the highest speed but the smallest capacity, while the
SDRAM is totally opposite of it. The SRAM is in the
middle and it negotiates the unbalance of the cache and
the SDRAM in speed and capacity. So, it affects the
system efficiency greatly. Putting small but frequent
reused data types in SRAM is one possible way to
protect them from victimization by larger data objects
such as video data. The frequently reused data, which
are subject of being prematurely ejected from the
cache, could then be kept in this space. According to
this mode, the SRAM is divided into three sections:
The first section is data exchanging section, which is
composed of two data buffers. This section can solve
the video data storage and exchanging problems. The
second section is the core code and variables storage
section, which is used to store the frequently called
functions such as Inverse Transform, Motion
Compensation and relevant variables. This section is
used for the frequent data management. The third

737373

section is the rest of the SRAM, which is considered as
cache for the other codes and data management.

The data exchanging section is primarily used to
solve the access and exchange of video data during
H.264 video decoding process. If the reference frame
and the current frame are allocated to SRAM, the
whole frame buffer will reach 2.4MB. In addition, the
source code needs approximately the 150Kbytes
storage space, while the other variables need about
300Kbytes storage section. Therefore, the system
altogether needs approximately the 2.85MB storage
space, which is by far bigger than the 256Kbytes
internal memory size that DM642 can provide. So, if
decoders take the frame as the unit like the PC
decoding mode, all video frames must be laid in
SDRAM, which will cause frequent exchanging data
between On-chip memory and Off-chip memory
during decoding. Since the access to external memory
is much slower than the access to internal memory, it
further inspires the contradiction between the
processing speed of the processor core and the data
access speed and it causes the DSP to consume most of
the time while accessing to extern memory. By this, it
is critical to optimize the architecture for H.264
decoding and allocate reasonable data exchanging
section. This optimization processes multiple blocks at
a time to obtain optimum cache performance and
EDMA bandwidth efficiency.

The unit of H.264 decoding is a 16×16 pixel
fragment known as a macro-block. The macro-block
covers the area of six 8×8 blocks (for 4:2:0 sub-
sampling). So that, decoders consider the Group of
Macro-Block Lines (GMBL) as it is the decoding unit.
In order to reduce the access to SDRAM as much as
possible during decoding GMBL, the buffer must be
able to store the decoded video data, reference frame
data, and the relevant structure variables of each
GMBL. In order to process multiple blocks at a time to
obtain optimal cache performance and EDMA
bandwidth efficiency, a double data buffers, namely
BUF1 and BUF2, are used to store the decoded data in
turn. Therefore, the decoder allocates almost
173Kbytes size space of SRAM for data exchanging
section. The 173Kbytes allocated size space comes
from 20.25Kbytes (the size of the original GMBL) plus
98.25Kbytes (the size of reference GMBL) and plus
55Kbytes (the size of structure variables). Therefore,
all the ways of storing decoded data may be divided
into two kinds: The frame level and the GMBL level.
In the optimal memory allocation method, the frame
buffers (GMBL1-6) are located in SDRAM, and the
GMBL buffers (BUF1-2) are laid in SRAM, as shown
in Fig.3.

H.264/AVC decoder program

The core code &
variables storage section

SRAM SDRAM

BUF2
based on GMBL

The data exchanging
section

BUF1
based on GMBL

CACHE

GMBL1

GMBL3

GMBL5

GMBL2

GMBL4

GMBL6

Data Exchanging

EDMA

Fig.3. H.264 decoder scheme based on the
GMBL structure

Our method for utilizing SRAM to save video data
solves the video data storage and the exchange
problems. However, unless the data exchange can be
realized in time, the performance of the decoder may
still not be improved. Therefore, it’s necessary to
allocate parts of SRAM for storing the relevant
variables of code and program. The H.264 decoder has
a characteristic of repeating operations and codes,
which need to be frequently called. In order to improve
the hit rate of L1P cache, the core code storage section
needs to be allocated to store the frequently called
functions, inverse quantization and so on. Thus, after
subtracting data exchanging section, there is only
83Kbytes storage space left in L2 SRAM. In addition,
there is a choice of cache setting for selecting the way
of data scheduling from SDRAM. By taking into
consideration of the contents above, this paper
proposes 3 modes:

Mode 1: All the spaces of On-Chip memory are
configured to SRAM that is used to store codes, data,
and global variables. This mode is called ALL SRAM
of L2. As for video algorithms, this mode is feasible
because the direction of data streams is clear and
scheduling EDMA can complete the data exchange.
Yet, it will consume a lot of time once DSP accesses
external memory.

Mode 2: The storage space of 83Kbytes size SRAM
is divided into two parts: The first one is of 64Kbytes
size for cache, while the surplus is for saving codes and
data, which are in common use. In this mode, the L2
cache is four-way set associative.

Mode 3: The storage space of 83Kbytes size SRAM
is divided into two parts: 32Kbytes size SRAM is set
for cache and the surplus is used for saving codes and
data. In this way, the access to SDRAM is possible to
complete in a high speed taking advantage of the

747474

cache. In this mode, The L2 cache is two-way set
associative.

After comparing the performance of the three
modes above, it is apparent that the second mode is
the optimum one. This mode is called Cache-based
memory mode. It separates the 64Kbytes SRAM into
L2. Surplus 19Kbytes SRAM is used for storing core
codes and variables. Other codes and data, which are
scheduled by L2 cache controller, are stored in
SDRAM. The DSP/BIOS statistical results are shown
in table 3. From this table, we can notice that the
proposed method (Cache-based memory mode) can
improve H.264/AVC decoding speed by almost 37%
compared to the no-memory optimization, with the
standard video sequences.

Table 3: The instructions cycles of decoding a
frame

Video
Sequence

256
Kbytes
Cache

64
Kbytes
Cache

32
Kbytes
Cache

No
Cache

Speed
Inc.
(%)

Foreman 3670
784

2319
935

2980
676

2841
189

36.8

Tempete 3878
023

2439
276

3117
935

2970
567

37.1

Note: Foreman, Tempete are the typical standard video

sequences.

5. Conclusions

Cache memories have strong influence on system
performance and are used to fill the processor-memory
speed gap. In this paper, an efficient two-level internal
memory organization for DSP is designed in detail
according to its hardware characteristics and the
software characteristics of H.264 video decoder. With
the memory optimization, the obtained H.264 decoder
can simultaneously decode eight channels CIF video
frames on TMS320DM642.

The experimental results presented in this paper
show that H.264 decoding performance can be
improved by almost 37% compared to the no memory
optimization, with the standard video streams. In our
future work, we plan to design and implement 720p
and 1080i resolution real-time decoder, which can
further improve the requirement of high-definition
embedded H.264/AVC video decoder.

6. References

[1] T.Wiegand, H.Schwarz, et al, “Rate constrained coder
control and comparison of video coding standards,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 688–703, July 2003.

[2] A.Jerraya, H.Tenhunen, et al, “Multiprocessor Systems-
on-Chips,” IEEE Computer Society, pp.36-40, July 2005.
 [3] M. Ravasi, et al, “High-Abstraction Level Complexity
Analysis and Memory Architecture Simulations of
Multimedia Algorithms”, IEEE Trans. CSVT, Vol. 15, No.
5, pp. 673-684, May 2005.
[4] Denolf, K. De Vleeschouwer, et al,, “Memory centric
design of an MPEG-4 video encoder” , IEEE Trans. CSVT,
Vol. 15, No. 5, pp. 609-619, May 2005.
[5] A. Asaduzzaman, I. Mahgoub, et al, “Cache Optimization
for Mobile Devices Running Multimedia Applications”,
Proceedings of the IEEE Sixth ISMSE, Miami,FL, December
2004, pp. 499-506.
[6] A.M. Molnos, B. Mesman, et al, “Data Cache
Optimization in Multimedia Applications”, Proc. of the 14th
Annual Workshop on Circuits, Systems and Signal
Processing, Veldhoven, November 2003, pp. 529-532.
 [7] E.Rotenberg, "Architectures for Real-Time",
www.tinker.ncsu.edu/ericro/research/realtime.htm, 2005.
[8] T. Wiegand, X.Zhang, et al “Long-Term Memory Motion
Compensated-Prediction”, IEEE Transactions on Circuits and
System for Video Technology, pp.70-84, Feb. 1999.
[9] E.D. Greef, et al, “Memory Organization for Video
Algorithms on Programmable Signal Processors ” , in
Proceedings of IEEE Int. Conf. on Computer Design, pp.
552-557, Oct. 1995.
[10] Golston, J. “DM642 digital media processor”, in Proc.
Of SPIE , v 5022 II, pp. 700-706, 2003.
[11] ITU-T Rec. H.264/ISO/IEC 11496-10, “Advanced
Video Coding”, Final Committee Draft, Document JVTE022,
September 2002.
[12] I. Richardson, "H.264 / MPEG-4 Part 10 White Paper",
www.vcodex.com, 2002.

757575

	CV_HuShuai
	Shuai Hu

	04566270

