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Abstract 

 
The computing power of microprocessors has 

exponentially increased in the past few decades, so the 
support to compute intensive multimedia applications 
has increased too. With such improved computing 
power, memory subsystem deficiency becomes the 
major barrier to support video decoder on the Digital 
Signal Processor (DSP). H.264/AVC becomes the next 
generation of video codec for embedded systems. In 
this paper, our focus is to enhance the decoding 
performance of H.264/AVC through memory 
optimization for DSP. The experimental results show 
that the proposed solutions can improve the 
H.264/AVC decoding speed by almost 37%. Also, the 
memory optimization method presented in this paper 
has been integrated into the developed embedded 
H.264/AVC video decoder. The decoder can perform 
real time decoding under eight channels of Common 
Intermediate Format (CIF) frame size, which is the 
typical requirement of networked video surveillance 
applications . 
 
1. Introduction 
 

A proverb says: A picture speaks more than a 
thousand words. Video messaging, video telephony, 
and video conferencing have started to enter the 
marketplace over the past several years and are 
becoming more and more popular. The demand to run 
such video applications on embedded devices is 
growing. The future of the embedded systems running 
multimedia is video applications. H.264/AVC is the 
new video coding standard. It can save 25%-45% and 
50%-70% of bitrate compared with MPEG-4 
Advanced Simple Profile and MPEG-2, respectively 
[1]. Although motion compensated transform coding is 
still adopted, many new features are used to achieve 

much better compression performance and subjective 
quality, such as quarter-pixel Motion Estimation (ME) 
with Multiple Reference Frames (MRF) and Variable 
Block Sizes (VBS), intra prediction, Context-based 
Adaptive Variable Length Coding (CAVLC), and in-
loop de-blocking filter. The rate distortion optimized 
mode decision [1] is also included in reference 
software to improve rate-distortion efficiency. 

Applications lead the architecture of embedded 
devices. For many embedded devices, single-processor 
implementation is recommended to meet the 
application’s size and power consumption requirement 
[2]. Due to the improvements in the semi-conductor 
industry, the required computational power to 
implement such a device is not an issue. However, due 
to the growing disparity between the increasing 
computation power and the memory speed, the amount 
of traffic from CPU to memory leads to a significant 
processor/memory speed gap [7]. Also, bus contention 
becomes a serious problem for the newly proposed 
multi-core processors like Intel Xeon and AMD 
Opteron. Using cache(s) may improve the overall 
performance by dealing with memory bandwidth 
bottlenecks and bus contention problems. Using data 
stored in the cache helps cut down bus traffic 
significantly. Consider an embedded video application 
with multi-channels Common Intermediate Format 
(CIF-352×288 pixels), 20-25 frames per second (fps), 
and 500 kbps data rate, which could be supported by 
Digital Signal Processors (DSP) with eight highly 
independent functional units that may take 720M 
cycles to run an H.264/AVC decoder. So, a two-level 
internal memory organization for DSP is designed to 
keep pipeline processing. 

The rest of this paper is organized as follows. In 
section 2, we introduce the related work. Section 3 
presents the H.264 decoder architecture. Section 4 
shows the two-level internal memory hierarchy 
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designed for DSP. Finally, we draw our conclusions in 
Section 5. 
 
2. Related work 
 

Generally speaking, there are two aspects affecting 
the system the most. One is the computational 
complexity, and the other is the communication 
between the processor and the memory. In this paper, 
we enhance the decoding performance of H.264/AVC 
through memory optimization of a digital signal 
processor. Some of the previous researches which have 
been done in this area are presented in the following 
paragraph.  

In [3], the authors give an overview of high-level 
complexity analysis and memory architecture of 
multimedia algorithms. However, if the amount of 
computation exceeds the maximum ability of processor, 
multi-processor or low complex algorithm should be 
considered. In [4], an efficient memory centric design 
methodology which completes the computational cost 
with a detailed analysis of data transfers and storage is 
applied on a simple profile MPEG-4 video decoder. 
The study [4] has showed how algorithmic 
optimization is an enabling factor for this methodology. 
The focus of memory is motivated by the data, which 
is the dominated nature of video coding algorithms, i.e., 
the data transfer and storage are the main cost factors 
in an efficient realization. Cache behavior of 
multimedia and traditional applications was examined 
in [5]. The authors in [5] have showed that multimedia 
applications exhibit higher data miss rate and 
comparable lower instruction miss rate. The problem 
related to improving memory hierarchy performance 
for multitasking data intensive application was 
addressed in [6]. The authors in [6] have used cache 
partitioning techniques to find a static task execution 
order for inter-task data cache misses. Due to the lack 
of freedom in reordering task execution, this method 
optimizes the caches more. In this aspect, in this paper, 
we present a tradeoff between the coding efficiency 
and the complexity. For the second aspect, it is a 
common situation that the speed of memory can not 
catch the speed of processor. Cache can balance the 
mismatch between them. So a two-level on-chip 
memory optimization method for DSP is presented in 
this paper to keep pipeline processing. 
 
3. H.264/AVC Video 
 

The standardization of video compression 
technology is revolution in the broadcast television, 
telecommunication, and home entertainment system. 
H.263 is standardized by ITU-T (International 

Telecommunication Union – Telecommunication 
Standardization Sector) in 1995 and it is widely used in 
videoconferencing systems. MPEG-4 (Part 2) is 
standardized by ISO (International Organization for 
Standardization) in 1998 and it enables a new 
generation of internet-based video applications. The 
groups developed these standards, the ISO Motion 
Picture Experts Group (MPEG) and the ITU-T Video 
Coding Experts Group (VCEG), have developed new 
standard that promises to significantly outperform both 
MPEG4 (Part 2) and H.263, providing high-quality, 
low bit-rate streaming video. The new standard is 
called Advanced Video Coding (AVC) and is widely 
known as H.264/AVC or MPEG-4 Part 10 [11].  

In 2001, the Joint Video Team (JVT) was formed 
including experts from MPEG and VCEG. The main 
task of JVT was to develop the draft H.26L (VCEG’s 
long-term effort to develop a new standard) into a full 
International Standard. In 2003, the final drafting work 
on the first version of the new standard was completed. 
The outcome is two identical standards: ISO MPEG 
standard is MPEG4 Part 10 and ITUT standard is 
H.264/AVC. 

  
3.1. H.264/AVC codec  
 

H.264/AVC standard does not explicitly define 
CODEC (encoder / decoder pair) like MPEG-4. 
Instead, H.264/AVC defines the syntax of an encoded 
video bit-stream together with the method of decoding 
this bit-stream [12]. The functional elements of an 
accommodating encoder and decoder are possible to 
include. Figure 1 shows the decoder functionalities. 
The functions shown in this figure are likely to be 
necessary for compliance. In addition, there is scope 
for considerable variation in the structure of the 
CODEC. The basic functional elements (such as 
prediction, transform, quantization, and entropy 
encoding) are little different from previous standards 
(MPEG-4 and H.263).  
 
3.2. H.264/AVC decoder  
 

We briefly discuss H.264/AVC decoding algorithm, 
our target application for this work. Various 
functionalities in H.264/AVC decoder are shown in 
Figure 1. The decoder receives an encoded bit-stream 
from the Network Abstraction Layer (NAL). The data 
elements are entropy decoded and reordered to produce 
set of quantized coefficients (X). These are rescaled 
and inverse transformed to give D’n. Using the header 
information from the bit-stream, the decoder creates 
prediction macro-block P, identical to the original 
prediction P formed in the encoder. P is added to D’n 
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to produce uF’n which is filtered to create the decoded 
macro-block F’n [12, 13]. 

 
 
Fig.1. H.264/AVC decoder architecture 

 
It is very important that both encoder and decoder 

use identical reference frames to create the prediction. 
Otherwise, the predictions in encoder and decoder may 
be different, leading to an increased error between the 
encoder and decoder.  
 
4.Two-level Internal Memory Optimization 
 

In real-time coding system, one serious bottleneck 
is the speed mismatch between memory and processor. 
One solution is to use cache efficiently. But by 
depending only on cache replacement policy by 
hardware, the decoder can not reach the top coding 
speed. So, we can analyze the data flow to help cache 
find out the best mapping position, or manage cache by 
ourselves. Compile-time data caching decisions have 
much large effect on the performance [9]. The 
following parts will introduce the two-level internal 
memory structure of DSP and the details of the 
memory organization design for H.264 video coding in 
turn. 
 
4.1. The Characteristic of TMS320DM642 
 

The TMS320DM642 (DM642) is the first integrated 
media processor based on the C64x Very Long 
Instruction Word (VLIW) DSP core [10]. The C64x 
CPU is optimized for video processing including both 
8-way VLIW parallelism and packed data processing 
within each functional unit. The CPU is complimented 
by a flexible chip-level architecture that maximizes 
system options and sustains the core processing 
capability. The key elements in the DM642 include: 
Two-level cache architecture, an Enhanced DMA 
(EDMA) controller, 64-bit external memory interface, 
three 20-bit video ports, Ethernet MAC, and so on. 
4.2. Two-level Internal Memory Structure 
 

The DM642 utilizes two-level cache architecture as 
shown in Fig.2. The first level, called L1, allows three 

parallel single-cycle memory accesses (one instruction 
fetch and two 64-bit data accesses) by the CPU at 
clock rates exceeding 720MHz [10]. This ensures a 
strong performance roadmap over time. The L1 
Program (L1P) cache is 16 Kbytes and is directly 
mapped. The L1 Data (L1D) cache is also 16 Kbytes, 
but it is a two-way set associative to account for 
multiple input sources. The second level, called L2, is 
256 Kbytes and allows large amounts of data to be 
brought on-chip. For example, regions of reference 
data for motion estimation can be retained on-chip 
across multiple blocks minimizing redundant external 
I/O. The L2 can be partitioned between cache and 
Static Random Access Memory (SRAM). Instructions, 
C variables, and random data accesses are typically 
cached. Regular data accesses, such as video input and 
output, are typically done with EDMA requests and 
use mapped L2 SRAM. 
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 Fig.2. Two-level cache architecture of DM642 
 
4.3. Optimized Cache Sub-system Design 
 

The optimal memory allocation method is based on 
the Cache-SRAM-SDRAM structure. The cache has 
the highest speed but the smallest capacity, while the 
SDRAM is totally opposite of it. The SRAM is in the 
middle and it negotiates the unbalance of the cache and 
the SDRAM in speed and capacity. So, it affects the 
system efficiency greatly. Putting small but frequent 
reused data types in SRAM is one possible way to 
protect them from victimization by larger data objects 
such as video data. The frequently reused data, which 
are subject of being prematurely ejected from the 
cache, could then be kept in this space. According to 
this mode, the SRAM is divided into three sections: 
The first section is data exchanging section, which is 
composed of two data buffers. This section can solve 
the video data storage and exchanging problems. The 
second section is the core code and variables storage 
section, which is used to store the frequently called 
functions such as Inverse Transform, Motion 
Compensation and relevant variables. This section is 
used for the frequent data management. The third 
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section is the rest of the SRAM, which is considered as 
cache for the other codes and data management. 

The data exchanging section is primarily used to 
solve the access and exchange of video data during 
H.264 video decoding process. If the reference frame 
and the current frame are allocated to SRAM, the 
whole frame buffer will reach 2.4MB. In addition, the 
source code needs approximately the 150Kbytes 
storage space, while the other variables need about 
300Kbytes storage section. Therefore, the system 
altogether needs approximately the 2.85MB storage 
space, which is by far bigger than the 256Kbytes 
internal memory size that DM642 can provide. So, if 
decoders take the frame as the unit like the PC 
decoding mode, all video frames must be laid in 
SDRAM, which will cause frequent exchanging data 
between On-chip memory and Off-chip memory 
during decoding. Since the access to external memory 
is much slower than the access to internal memory, it 
further inspires the contradiction between the 
processing speed of the processor core and the data 
access speed and it causes the DSP to consume most of 
the time while accessing to extern memory. By this, it 
is critical to optimize the architecture for H.264 
decoding and allocate reasonable data exchanging 
section. This optimization processes multiple blocks at 
a time to obtain optimum cache performance and 
EDMA bandwidth efficiency. 

The unit of H.264 decoding is a 16×16 pixel 
fragment known as a macro-block. The macro-block 
covers the area of six 8×8 blocks (for 4:2:0 sub-
sampling). So that, decoders consider the Group of 
Macro-Block Lines (GMBL) as it is the decoding unit. 
In order to reduce the access to SDRAM as much as 
possible during decoding GMBL, the buffer must be 
able to store the decoded video data, reference frame 
data, and the relevant structure variables of each 
GMBL. In order to process multiple blocks at a time to 
obtain optimal cache performance and EDMA 
bandwidth efficiency, a double data buffers, namely 
BUF1 and BUF2, are used to store the decoded data in 
turn. Therefore, the decoder allocates almost 
173Kbytes size space of SRAM for data exchanging 
section. The 173Kbytes allocated size space comes 
from 20.25Kbytes (the size of the original GMBL) plus 
98.25Kbytes (the size of reference GMBL) and plus 
55Kbytes (the size of structure variables). Therefore, 
all the ways of storing decoded data may be divided 
into two kinds: The frame level and the GMBL level. 
In the optimal memory allocation method, the frame 
buffers (GMBL1-6) are located in SDRAM, and the 
GMBL buffers (BUF1-2) are laid in SRAM, as shown 
in Fig.3. 
 

H.264/AVC decoder program

The core code & 
variables storage section

SRAM SDRAM

BUF2
based on GMBL

The data exchanging 
section

BUF1
based on GMBL

CACHE

GMBL1

GMBL3

GMBL5

GMBL2

GMBL4

GMBL6

Data Exchanging

EDMA

 
 
Fig.3. H.264 decoder scheme based on the 
GMBL structure 
 

Our method for utilizing SRAM to save video data 
solves the video data storage and the exchange 
problems. However, unless the data exchange can be 
realized in time, the performance of the decoder may 
still not be improved. Therefore, it’s necessary to 
allocate parts of SRAM for storing the relevant 
variables of code and program. The H.264 decoder has 
a characteristic of repeating operations and codes, 
which need to be frequently called. In order to improve 
the hit rate of L1P cache, the core code storage section 
needs to be allocated to store the frequently called 
functions, inverse quantization and so on. Thus, after 
subtracting data exchanging section, there is only 
83Kbytes storage space left in L2 SRAM. In addition, 
there is a choice of cache setting for selecting the way 
of data scheduling from SDRAM. By taking into 
consideration of the contents above, this paper 
proposes 3 modes: 

Mode 1: All the spaces of On-Chip memory are 
configured to SRAM that is used to store codes, data, 
and global variables. This mode is called ALL SRAM 
of L2. As for video algorithms, this mode is feasible 
because the direction of data streams is clear and 
scheduling EDMA can complete the data exchange. 
Yet, it will consume a lot of time once DSP accesses 
external memory. 

Mode 2: The storage space of 83Kbytes size SRAM 
is divided into two parts: The first one is of 64Kbytes 
size for cache, while the surplus is for saving codes and 
data, which are in common use. In this mode, the L2 
cache is four-way set associative. 

Mode 3: The storage space of 83Kbytes size SRAM 
is divided into two parts: 32Kbytes size SRAM is set 
for cache and the surplus is used for saving codes and 
data. In this way, the access to SDRAM is possible to 
complete in a high speed taking advantage of the 

747474



cache. In this mode, The L2 cache is two-way set 
associative. 

After comparing the performance of the three 
modes above, it is apparent that the second mode is  
the optimum one. This mode is called Cache-based 
memory mode. It separates the 64Kbytes SRAM into 
L2. Surplus 19Kbytes SRAM is used for storing core 
codes and variables. Other codes and data, which are 
scheduled by L2 cache controller, are stored in 
SDRAM. The DSP/BIOS statistical results are shown 
in table 3. From this table, we can notice that the 
proposed method (Cache-based memory mode) can 
improve H.264/AVC decoding speed by almost 37% 
compared to the no-memory optimization, with the 
standard video sequences. 
 
Table 3: The instructions cycles of decoding a 
frame 
 

Video 
Sequence 

256 
Kbytes 
Cache 

64 
Kbytes 
Cache 

32 
Kbytes 
Cache 

No 
Cache 

Speed 
Inc. 
(%) 

Foreman 3670 
784 

2319 
935 

2980 
676 

2841 
189 

36.8 

Tempete 3878 
023 

2439 
276 

3117 
935 

2970 
567 

37.1 

 
Note: Foreman, Tempete are the typical standard video 

sequences. 
 
5. Conclusions 
 

Cache memories have strong influence on system 
performance and are used to fill the processor-memory 
speed gap. In this paper, an efficient two-level internal 
memory organization for DSP is designed in detail 
according to its hardware characteristics and the 
software characteristics of H.264 video decoder. With 
the memory optimization, the obtained H.264 decoder 
can simultaneously decode eight channels CIF video 
frames on TMS320DM642. 

The experimental results presented in this paper 
show that H.264 decoding performance can be 
improved by almost 37% compared to the no memory 
optimization, with the standard video streams. In our 
future work, we plan to design and implement 720p 
and 1080i resolution real-time decoder, which can 
further improve the requirement of high-definition 
embedded H.264/AVC video decoder. 
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