
OpenGL_Programming-3

EE – 7000

Sep, 26/28,2011

Previous Class
OpenGL basics

Drawing geometric objects

Viewing

Color

 This Class:

 Lighting

 Texture Mapping

Lighting

Why Lighting?

 What light source is used and how the object response to the

light makes difference

 Ocean looks bright bluish green in sunny day but dim

 gray green in cloudy day

 Lighting gives you a 3D view to an object

 A unit sphere looks no difference from a 2D disk

 To get realistic pictures, the color computation of pixels must

include lighting calculations

Types of Light

 Ambient:

 Light that’s been scattered so much by the environment that its

 direction is impossible to determine – it seems to come

 from all directions

 Diffuse

 Light that comes from one direction, but it gets scattered

 equally in all directions

 Specular

 Light comes from a particular direction, and its tends to

 bounce off the surface in a preferred direction

Materials Colors

 A material’s color depends on the percentage of the incoming

different lights it reflects

 Materials have different ambient, diffuse and specular

reflectances

 Material can also have an emissive color which simulates light

originating from an object

 Headlights on a automobile

OpenGL Lighting Model

 Lighting has four independent components that are computed

independently

 Emission, Ambient, Diffuse, and Specular

 OpenGL approximates lighting as if light can be broken into red,

green, and blue components
 The RGB values for lights mean different than for materials

 For light, the numbers correspond to a percentage of full intensity for each color

 For materials, the numbers correspond to the reflected proportions of those

colors

 Total effect is a combination of corresponding components of

incoming light and illuminated material surface

 (LR*MR, LG*MG, LB*MB)

Theory of Illumination

 Not only knowledge about light but also about what happens

when light is reflected from an object into our eyes is

important to obtain realistic images

 The general problem is to compute the apparent color at

each pixel that corresponds to part of the object on the

screen

 The color produced by lighting a vertex (or a object) has

several contributions
 Emission

 Global ambient light

 Contributions from light sources

Material Emission

 Emissive brightness of the material = Me

 There is no attempt to model properties of the light or its

effects on the objects

 The emissive color adds intensity to the object

Ie = Me

Global Ambient Light

 Light from all directions but not from any specific sources

 Ambient light intensity = Ga

 Ambient reflection coefficient of material = Ma

A Point Source of Light

 Contribution from a point source of light include three terms

 Light has ambient (Ia), diffuse (Id) and specular (Is)

components

 Material has ambient(Ma), diffuse (Md) and specular

reflection (Ms) properties

Point Light’s Contribution

 First term = ambient

 Second term = diffuse

 Third term = specular

Point Light’s Contribution
 Ambient term

 The ambient component of each incoming light source is

combined with a material’s ambient reflectance

 Diffuse term
 Brightness is inversely proportional to the area of the object illuminated

(dot produce of light vector and surface normal)

 greatest when N and L are parallel

 smallest when N and L are orthogonal

 In calculations, max {N.L, 0} is used to avoid negative values

 Specular term
 Brightness depends on the angle between reflection vector (R) and viewer

vector (V), i.e., on direction of viewer

 The specular reflection exponent n is 1 for a slightly glossy surface and

infinity for a perfect mirror

Attenuation

 Attenuation factor

 Light attenuates with distance from the source

The intensity becomes

Spotlight Effect

 When the vertex lies inside the cone of illumination produced by
spotlight, its contribution to the light intensity is

Where D gives the spotlight’s direction. The intensity is

maximum in the center of cone and is attenuated toward

the edge of the cone

s is 1 if the source is not spotlight

m is exponent determining the concentration of the light

The intensity of light source is

Putting All Together

 Entire lighting calculation in RGB mode gives

Adding Lighting to the Scene

 Define normal vectors for each vertex of each object

 Create, select, and position one or more light sources

 Create and select a lighting model

 Define material properties for the objects in the scene

Creating Light Sources

 Properties of Light sources are color, position, and direction

void glLight{if}(Glenum light, Glenum pname, TYPE param);

void glLight{if}v(Glenum light, Glenum pname, TYPE *param);

 Creates the light specified by light that can be GL_LIGHT0,

GL_LIGHT1,…or GL_LIGHT7

pname specifies the characteristics of the light being set

parama indicates the values to which the pname characteristic

 glEnable (GL_LIGHT0)

Color for a Light Source

GLfloat light_ambient[] = {0.0,0.0,0.0,1.0};

GLfloat light_diffuse[] = {1.0,1.0,1.0,1.0};

GLfloat light_specular[] = {1.0,1.0,1.0,1.0};

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);

glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);

glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);

Position of Light Source

 Positional light source

 (x, y, z) values specify the location of the light

GLfloat light_position[] = {x, y, z, w};

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

 Directional light source

(x, y, z) values specify the direction of the light located at the

infinity

No attenuation

GLfloat light_position[] = {x, y, z, 0};

glLightfv(GL_LIGHT0, GL_POSITION, light_position);

Attenuation

 Attenuation factor for a positional light

Needs to specify three coefficients

glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION,

 2.0);

glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 1.0);

glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION,

 1.0);

 Ambient, diffuse, and specular contributions are all attenuated

Spotlights

 The shape of the light emitted is restricted to a cone

 glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

 The cutoff parameter is set to 45 degrees

 GLfloat spot_direction[] = {-1.0, -1.0, 0.0];

glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION,

spot_direction);

specifies the spotlight’s direction which determines the axis of

the cone of light

 glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, 2.0);

Controls how concentrated the light is

Multiple Lights

 You can define up to eight light sources

 Need to specify all the parameters defining the

 position and characteristics of the light

 OpenGL performs calculations to determine how much light

each vertex gets from each source

 Increasing number of lights affects performance

Controlling a Light’s Position and Direction

 A light source is subject to the same matrix transformations

as a geometric model

Position or direction is transformed by the current modelview

matrix and stored in eye coordinates

 Keeping the light stationary

Specify the light position after modelview transformations

 Independently moving the light

Set the light position after the modeling transformation that you

want to apply for light

 Moving the light together with the viewpoint

Set the light position before the viewing transformation

Setting a Lighting Model

 How to specify a lighting model

 glLightModel{if}(GLenum pname, TYPE param);

 glLightModel(if}v(GLenum pname, TYPE *param);

 Sets properties of the lighting model

 pname defines the characteristic of the model being set

 param indicates the values to which the pname characteristic is set

 Needs to be enabled or disabled

glEnable(GL_LIGHTING);

glDisable(GL_LIGHTING);

Components of Lighting Model
 Global ambient light

 Ambient light from not any particular source
GLfloat lmodel_ambient[] = {0.2, 0.2, 0.2, 1.0}
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);

 Local or Infinite viewpoint
 Whether the viewpoint position is local to the scene or whether it
should be considered to be an infinite distance away
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER,
GL_TRUE);
Default is an infinite viewpoint

 Two-sided lighting
Whether lighting calculations should be performed differently for both
the front and bacl faces of objects
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

Defining Material Properties

 Specifying the ambient, diffuse, and specular colors, the

 shininess, and the color of any emitted light

 void glMaterial{if}(GLenum face, GLenum pname, TYPE param);

 void glMaterial{if}v(GLenum face, GLenum pname, TYPE *param);

Specifies a current material property for use in lighting calculations

Face can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK

Pname identifies the particular material property being set

Param defines the desired values for that property

Reflectances

 Diffuse and ambient reflection
Gives color
GLfloat mat_amb_diff[] = {0.1, 0.5,0.8,1.0};
glMaterialfv(GL_FRONT_AND_BACK,
GL_AMBIENT_AND_DIFFUSE, mat_amb_diff);

 Specular reflection
Produces highlights
GLfloat mat_specular[] = {1.0,1.0,1.0,1.0);
Glfloat low_shininess[] = {5.0};
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);

 Emission
Make an object glow (to simulate lamps and other light sources
GLfloat mat_emission[] = {0.3,0.2,0.2,0.0};
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);

Changing Material Properties

 Different material properties for different vertices on the

 same object or different objects

 glMaterialfv() needs to be called repeatedly to set the

material property that needs to be re-specified for each

case

 glColorMaterial(GLenum face, GLenum mode);

Specifies the property (properties) defined by mode of the

 selected material face (or faces) to track the value of the current

 color at all times

 Needs enabling

Example: A lit sphere

 2D disk in the absence of lighting

 3D sphere

 Shinning sphere

 Emissive sphere

 Moving light source

Texture Mapping

Drawing Pixel Data
Geometric Versus Pixel Data

 Rendering of geometric data (arrays of vertices)

 points, lines, polygons

 Rendering of pixel data (arrays of pixels)
Bitmaps

Characters in fonts

Array of 0s and 1s(1 = the pixel is affected)

Serves as drawing mask for overlying another image

Image data

A photograph that is scanned or an image calculated by some

program in memory by pixels or an image first drawn and

then read back pixel by pixel

Several pieces of data per pixel (R,G,B,A values)

Simply overwrites in the framebuffer

Current Raster Position

 void glRasterPos{234}{sifd}(TYPE x, TYPE y, TYPE z, TYPE w);

 Sets the current raster position where the next bitmap (or image)

 is to be drawn

 The raster position coordinates are subject to the modelview and

 projection transformations in the same way as the vertex

 Coordinates

 To specify the raster position directly in the screen coordinates,

only 2D version of transformations need to be specified

Drawing Bitmaps

 void glBitmap(GLsizei width, GLsizei height, GLfloat xbo,

GLfloat ybo, GLfloat xbi, GLfloat ybi, const Glubyte *bitmap);

Draws the bitmap specified by bitmap

Width and height define size of the bitmap

Subscript bo means the origin of the bitmap

Subscript bi means increment to the current raster

position after the bitmap is rasterized

Manipulating Images
 void glReadPixels(GLint x, GLint y, GLsizei width, Glsizei height,

GLenum format, GLenum type, GLvoid *pixels)

 Reads pixel data from the specified framebuffer rectangle and stores data in

 the array pointed by pixels

 format can be GL_RGBA, GL_RED, GL_ALPHA, GL_DEPTH_COMPONENT

 type can be s, u, i, f, etc.

 void glDrawPixels(GLsizei width, GLsizei height, Glenum format,

GLenum type, GLvoid *pixels)

Draws a rectangle of pixel data with dimensions width and height

Pixel rectangle has its lower-left corner at the current raster position

 void glCopyPixels(GLint x, GLint y, GLsizei width, Glsizei height,

GLenum buffer)

Copies pixel data from the specified framebuffer rectangle

Buffer can be GL_COLOR, GL_DEPTH, GL_STENCIL

Example: Drawing Image

 Make a checkerboard image

 Define raster position

 Draw an pixel rectangle of the image

What is Texture Mapping?

 Gluing an image (such as scanned photograph) to a polygon
Bricks on wall

Ground in flight simulation

Vegetation

 Textures are rectangular arrays of data (colors, luminace)
Individual values are called texels

 Textures can be manipulated with transformations
 Repeat textures in different directions to cover the surface

 Apply textures in different shapes and sizes

+ =

=

Steps in Texture Mapping

 Create a texture object and specify a texture for the object

 Indicate how the texture is to be applied to each pixel

 Enable texture mapping

 Draw the scene by supplying both texture and geometric

coordinates

Sample Example

 Check board texture is generated
makeCheckImage()

 All texture mapping initialization occurs in init()
glGenTextures(1, &texName);
glBindTexture(GL_TEXTURE_2D, texName);

 Single, full resolution texture map is specified
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkImageWidth,
checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, checkImage);

 Specify how the texture to be wrapped and how the colors are to be
filtered if there is not an exact match between texels and pixels

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST);

More on Example
 In display(void), texture is turned on

glEnable(GL_TEXTURE_2D);

 Drawing mode is set so as to draw the textured polygons

 using the colors from the texture map
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
GL_REPLACE);

 Two polygons are drawn by specifying texture coordinates

 along with vertex coordinates
 glTexCoord2f(0.0,0.0); glVertex3f(-2.0,-1.0,0.0);
 …..

 Texture is finally turned off
glDisable(GL_TEXTURE_2D);

3D Textures

 3D textures are used in scientific visualization

 e.g. volume rendering

 Defining a 3D texture:

glTexImage3D(GL_TEXTURE_3D, 0, GL_RGB, iWidth, iHeight,
iDepth,

0, GL_RGB, GL_UNSIGNED_BYTE, image);

 Replace all or some of the texels of a 3D texture

 Using compressed texture images

 Mipmaps: Multiple levels of detail

 Filtering

 Texture objects

 Texturing functions

Example:

 Putting all together: cube.cpp

 Viewing

 Color

 Lighting

 Texture Mapping

