
OpenGL Programming-2

10/2/2011 1

EE – 7000

Sep, 21,2011

10/2/2011 2

 Last class:

 Opengl basics

 Drawing geometric objects

 This class:

 Viewing

 Color

Viewing

10/2/2011 3

Creating and Viewing a Scene

 How to view the geometric models that you can now draw

with OpenGL

 Two key factors:
 Define the position and orientation of geometric objects in 3D space

(creating the scene)

 Specify the location and orientation of the viewpoint in the 3D space

(viewing the scene)

 Try to visualize the scene in 3D space that lies deep inside

your computer

10/2/2011 4

The Camera Analogy

10/2/2011 5

 Position and aim the Camera at the scene

 Viewing transformation: Position the viewing volume in the world

 Arrange the scene to be photograph into the desired composition

 Modeling transformation: Position the models in the world

 Choose a camera lens or adjust the zoom to adjust field of view

 Projection transformation: Determine the shape of the viewing volume

 Determine the size of the developed (final) photograph

 Viewport transformation

A Series of Operations Needed

 Transformations

 Modeling, viewing and projection operations

 Clipping

 Removing objects (or portions of objects) lying outside the

window

 Viewport Transformation

 Establishing a correspondence between the transformed

coordinates (geometric data) and screen pixels

10/2/2011 6

Modeling

10/2/2011 7

Take real pictures VS “Electronic Pictures”

Set up tripod and

point at your camera at

your scene

Arrange the scene into

a desired composition

Choose a lens or adjust

zoom

Determine how large

you want the final photo

to be

Viewing

transformation

Modeling

transformation

Projection

transformation

Viewport

transformation

OpenGL Coordinate System

10/2/2011 8

 OpenGL Pipeline

Check details at:

http://research.cs.queensu.ca/~jstewart/454/notes/pipeline/

http://research.cs.queensu.ca/~jstewart/454/notes/pipeline/
http://research.cs.queensu.ca/~jstewart/454/notes/pipeline/

Viewing and Modeling Transformation

10/2/2011 9

 Modeling Transformations

 void glTranslatef (float x, float y, float z);

 void glRotatef (float angle, float x, float y, float z);

 void glScalef (float x, float y, float z);

 Your own matrix:
 float m[]={…}

 glMultMatrixf (m)

 Viewing Transformations
 void gluLookAt (Gldouble eyeX, Gldouble eyeY, Gldouble eyeZ,

 GLdouble centerX, Gldouble centerY, Gldouble centerZ, Gldouble

 upX, Gldouble upY, Gldouble upZ)

 defines a line of sight (most convenient)

 encapsulates a series of rotation and translation

 Same effect can be achieved by glTranslate*(), glRotate*(), glScale*()…

Mathematics in OpenGL

10

Transformation matrix

• Transformation is represented by matrix multiplication

• Construct a 4x4 matrix M which is then multiplied by the coordinates of each

vertex v in the scene to transform them to new coordinates v’

 v’ = Mv

Homogeneous Coordinates:

Relation between Cartesian and

homogeneous coordinates:

Mathematics in OpenGL

Translation

(x,y,z)->(x+tx, y+ty, z+tz)

11

Mathematics in OpenGL

Rotation

Arbitrary rotation

matrix is the concatenation

of three rotation matices

Note:

Since matrix multiplication

is not commutative, the

order of rotation can not be

exchanged.

12

Mathematics in OpenGL

Scaling

(x, y, z)->

(sx*x, sy*y, sz*z)

13

Order of Matrix Multiplication

 Each transformation command multiplies a new matrix
M by the current matrix C

 Last command called in the program is the first one applied to the vertices

 glLoadIdentity();

 glMultMatrixf(N);

 glMultMatrixf(M)

 glMultMatrix(L)

 glBegin(GL_POINTS);

 glVertec3f(v);

 glEnd();

 The transformed vertex is INMLv

 Transformations occur in the opposite order than they applied

 Transformations are first defined and then objects are
drawn

10/2/2011 14

Coordinate Systems

10/2/2011 15

 Grand, fixed coordinate system
 Geometric models are transformed in the fixed coordinate system
 Matrix multiplication occur in the opposite order from how they appear in the
 code, e.g.,
glMultMatrixf(T);
glMultMatrixf(R);

The order is T(Rv)

 Local coordinate system
 The system is tied to the object you are drawing
 All operations occur relative to this moving coordinate system
 Matrix multiplications appear in the natural order, e.g, R(Tv)
 Useful for applications such as robot arms

General Purpose Transformation Commands

10/2/2011 16

 void glMatrixMode(GLenum mode);

 Specifies which matrix will be modified, using GL_MODELVIEW or
 GL_PROJECTION for mode

 Multiplies the current matrix C by the specified matrix M and then
sets the result to be the current matrix

Final matrix will be CM

 Combines previous transformation matrices with the new one

 But you may not want such combinations in many cases

 void glLoadIdentity(void);
Sets the current matrix to the 4x4 identity matrix

Clears the current matrix so that you avoid compound transformation for new
matrix

More Commands

10/2/2011 17

 void glLoadMatrix(const TYPE *m);

 Specifies a matrix that is to be loaded as the current matrix

 Sets the sixteen values of the current matrix

 to those specified by m

 void glMultMatrix(const TYPE *m);

 Multiplies the matrix specified M by the current matrix and

stores the result as the current matrix

Modeling Transformations

10/2/2011 18

 Positioning and orienting the geometric model

 MTs appear in display function

 Translate, rotate and/or scale the model

 Combine different transformations to get a single matrix

 Order of matrix multiplication is important

 Affine transformation

OpenGL Routines for MTs

10/2/2011 19

 void glTranslate{fd}(TYPE x, TYPE y, TYPE z);

 Moves (translates) an object by given x, y and z values

 void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z);

 Rotates an object in a counterclockwise direction by angle (in
degrees) about the rotation axis specified by vector (x,y,z)

 void glScale{fd}(TYPE x, TYPE y, TYPE z);

 Shrinks or stretches or reflects an object by specified

factors in x, y and z directions

 Your Own Matrix

Transformed Cube

10/2/2011 20

void {display}

{
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0,0.0,5.0, 0.0,0.0,0.0,
0.0,1.0,0.0);
glutSolidCube(1);
glTranslatef(3, 0.0, 0.0);
glScalef(1.0, 2.0, 1.0);
glutSolidCube(1);

}

First cube is centered at (0,0,0)

Second cube is at (3,0,0)

and its y-length is scaled twice

Viewing Transformations

10/2/2011 21

 Specify the position and orientation of viewpoint

 Often called before any modeling transformations so that

the later take effect on the objects first

 Defined in display or reshape functions

 Default: Viewpoint is situated at the origin, pointing down the negative
z-axis, and has an up-vector along the positive y-axis

 VTs are generally composed of translations and rotations

 Define a custom utility for VTs in specialized applications

Using GLU Routine for VT

10/2/2011 22

 void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble

eyez, GLdouble centerx, GLdouble centery, GLdouble

centerz, GLdouble upx, GLdouble upy, GLdouble upz);

 Defines a viewing matrix and multiplies it by the current matrix

 eyex,eyz,eyz = position of the viewpoint

 centerx,centery,centerz = any point along the desired line of sight

 upx,upy,upz = up direction from the bottom to the top of vewing

volume

 gluLookAt(0.0,0.0,5.0, 0.0,0.0,-10.0, 0.0,1.0,0.0);

Using glTranslate and glRotate for VT

10/2/2011 23

 Use modeling transformation commands to emulate viewing
transformation

 glTranslatef(0.0, 0.0, -5.0)
 Moves the objects in the scene -5 units along the z-axis
 This is equivalent to moving the viewpoint +5 units along the z-axis

 glRotatef(45.0, 0.0, 1.0, 0.0);
 Rotates objects (local coordinates) by 45 degrees about y-axis
 To view objects from the side
 This is equivalent to rotating camera in opposite sense

 Total effect is equivalent to

 gluLookAt (3.53,0.0,3.53, 0.0,0.0,0.0, 0.0,1.0,0.0);

Modelview Matrix

10/2/2011 24

 Modeling and viewing transformations are complimentary

so they are combined to the modelview matrix mode

 To activate the modelview transformation
glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslate();

glRotate();

 Default mode is set at modelview
Needs to be specified only if the other mode (projection) is

 activated and you want to go back to modelview mode

Example 1

10/2/2011 25

 Modeling and Viewing Transformation

10/2/2011 26

Projection Transformation

10/2/2011 27

 Call glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

activate the projection matrix

PT is defined in reshape function

 To define the field of view or viewing volume

 how an object is projected on the screen

 which objects or portions of objects are clipped out of the final

 image

Two Types of Projection

10/2/2011 28

 Perspective projection

Foreshortening:

 The farther an object is from the camera, the smaller it appears in

 the final image

Gives a realism: How our eyes work

Viewing volume is frustum of a pyramid

 Orthographic projection

 Size of object is independent of distance

 Viewing volume is a rectangular parallelepiped (a box)

Project Transformations

10/2/2011 29

 Perspective Projection

 Things farther away get smaller

 Parallel lines no longer parallel: vanishing point

Viewing Coordinate System (VCS)

glFrustum

10/2/2011 30

 void glFrustum(GLdouble left, GLdouble right, Gldouble bottom,

GLdouble top, GLdouble near, GLdouble far);

 Creates a matrix for perspective-view frustum

 The frustum’s viewing volume is defined by the coordinates of the

 lower-left and upper-right corners of the near clipping plane

gluPerspective

10/2/2011 31

 void gluPerspective(GLdouble fovy, GLdouble aspect,

GLdouble near, GLdouble far);

 Creates a matrix for a symmetric perspective-view frustum

 Frustum is defined by fovy (angle in yz plane) and aspect ratio

 Near and far clipping planes

Orthographic Projection

10/2/2011 32

 Void glOrtho(GLdouble left, GLdouble right, GLdouble

bottom, GLdouble top, Gldouble near, GLdouble far);

 Creates an orthographic parallel viewing volume

10/2/2011 33

Viewing Volume Clipping

10/2/2011 34

 Clipping
Frustum defined by six planes (left, right, bottom, top, near, and far
Clipping is effective after modelview and projection transformations

 Further restricting the viewing volume by specifying additional
clipping planes (up to 6)

 glClipPlane(GLenum plane, const GLdouble *equation)
 Defines a clipping plane.
 The equation argument points to the coefficients of the plane
 equation Ac+By+Cz+D=0
 Only points that satisfy (A B C D)M-1(xe ye ze we)T >=0 are kept.
 The plane argument is GL_CLIP_PLANEi, where is labels the
 clipping plane
 Needs to be enabled and disabled

Example 2: Clipping

10/2/2011 35

void display (void)

{
GLdouble eqn0[4] = {0.0, 1.0, 0.0, 0.0);
GLdouble eqn1[4] = {1.0, 0.0, 0.0, 0.0);
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 0.0, 0.0);
glClipPlane (GL_CLIP_PLANE0, eqn0);
glEnable (GL_CLIP_PLANE0);
glClipPlane (GL_CLIP_PLANE1, eqn1);
glEnable (GL_CLIP_PLANE1);
glutWireSphere(1.0, 20, 16);
glFlush();

}

10/2/2011 36

Viewport Transformation

10/2/2011 37

 Viewport is a rectangular region of window where the image is

drawn

 Measured in window coordinates

 Reflects the position of pixels on the screen relative to lower-left

 corner of the window

 void glViewport(GLint x, GLint y, GLsizei width, GLsizei

height);

 Defines a pixel rectangle in the window into which the final image is

 mapped

 Aspect ratio of a viewport = aspect ratio of the viewing volume,

 so that the projected image is undistorted

 glViewport is called in reshape function

Vertex Transformation Flow

10/2/2011 38

Matrix Stacks

10/2/2011 39

 OpenGL maintains stacks of transformation matrices

 At the top of the stack is the current matrix

 Initially the topmost matrix is the identity matrix

 Provides an mechanism for successive remembering, translating

 and throwing

 Get back to a previous coordinate system

 Modelview matrix stack

 Has 32 matrices or more on the stack

 Composite transformations

 Projection matrix stack

 is only two or four levels deep

Pushing and Popping the Matrix Stack

10/2/2011 40

 void glPushMatrix(void);
 Pushes all matrices in the current stack down one level

 Topmost matrix is copied so its contents are duplicated in both the top and

 second-from-the-top matrix

 Remember where you are

 void glPopMatrix(void);
 Eliminates (pops off) the top matrix (destroying the contents of the popped

 matrix) to expose the second-from-the-top matrix in the stack

 Go back to where you were

Example 3: Building A Solar System

10/2/2011 41

 How to combine several transformations to achieve a particular

result

 Solar system (with a planet and a sun)
Setup a viewing and a projection transformation

Use glRotate to make both grand and local coordinate systems rotate

Draw the sun which rotates about the grand axes

glTranslate to move the local coordinate system to a position where

 planet will be drawn

A second glRotate rotates the local coordinate system about the

 local axes

Draw a planet which rotates about its local axes as well as about the

 grand axes (i.e., orbiting about the sun)

Commands to Draw the Sun and Planet

10/2/2011 42

glPushMatrix ();

glRotatef (year, 0.0, 1.0, 0.0);

glutWireSphere (1.0, 20, 16);

glTranslatef (2.0, 0.0, 0.0);

glRotatef (day, 0.0, 1.0, 0.0);

glutWireSphere (0.2, 10, 8);

glPopMatrix ();

Color

10/2/2011 43

Color Images

10/2/2011 44

 Goal of OpenGL is to draw color pictures on the computer

screen

 Window is a rectangular array of pixels

 How to determine the final color of every pixel

Color Perception

10/2/2011 45

 Our eyes see a mixture of photons of different wavelengths as a

 color

 Visible spectrum:

 Violet (390 nm) to Red (720 nm)

 Cone cells in the retina are excited by photons

 Three types of cone cells respond best to three different

 wavelengths

 Red Green Blue

 Other representations: HLS, HSV, CMYK

Computer Color

10/2/2011 46

 Follows RGB analogy

 Each pixel on the screen emits right amounts of the R, G and B
 light to appropriately stimulate different types of cones in
 the eye to display a particular color

 Color cube

 Combining the R, G and B light results in different colors
Red and Blue make megenta

Red and Green make yellow

 Color buffer
Memory for the color information for pixels

Size of buffer is expressed in bits; an n bit buffer could 2n

 possible colors for each pixel

Color Display Mode

10/2/2011 47

 RGBA mode
Red, green, blue and alpha commponets
The R, G and B values can range from 0.0 (none) to 1.0 (full
 intensity)
A 24-bitplane system provides 8 bits each to R, G and B
 The values are clamped to (0.0,1.0)
 Each color component range:
 0/2n = 0.0, 1/2n, 2/2n, ………, 2n/2n =1.0
 thus displaying up to 256x256x256 ~ 16.77 million distinct
 colors

 Color-Index mode
Use color map or table
Stores a single number (index) for each pixel to indicate an entry
 in a lookup table or color map

Specifying Color

10/2/2011 48

 RGBA mode is preferable over color-index mode

 Each object is drawn using the current color
 Lighting can change the actual color that will ultimately be shown

 void glColor4{b s i f d ub us ui}(TYPE r, TYPE g, TYPE b,TYPE a);

 void glColor4{b s i f d ub us ui}v(const, TYPE *v);
 Sets the current red, green, blue, and alpha values
 Default value of alpha value (a) is 1.0
 Several acceptable data types for parameters

 glColor3f(1.0,0.0,0.0) RED

 glColor3f(1.0,1.0,0.0) YELLOW

 glColor3f(1.0,1.0,1.0) WHITE

 glColor3f(0.0,0.0,0.0) BLACK

Shading Model

10/2/2011 49

 void glShadeModel(GLenum mode)
 Sets the shading model with argument mode taking GL_FLAT or

GL_SMOOTH

 Flat shading
The color of one particular vertex defines the color of entire primitive

 Smooth (Gouraud) shading
The color at each vertex is treated individually, and the colors for the

interior of the polygon are interpolated between the vertex colors

Neighboring pixels have slightly different color

Examples 5:

 6.cpp (color)

10/2/2011 50

