
EE – 7000

Sep,19,2011

OpenGL Programming-1

10/2/2011 1

Topics in OpenGL

 OpenGL basics

 Drawing geometric objects

 Viewing

 Color

 Lighting

 Some special topics (texture mapping)

10/2/2011 2

What is OpenGL?
A Standard, hardware-independent interface to

Graphics hardware

 Introduced in 1992

 Most widely used 3D graphics API

 Portable across a wide array of platforms

Current version: OpenGL 4.2

 Older versions: 1.’s, 2.’s and 3.’s

No commands for windows management

 Does not create window

 Does not take user input (such as mouse click)

10/2/2011 3

What Is OpenGL?
Provides a powerful but primitive set of rendering commands

 Points, lines and polygons

No high-level rendering commands

 Ultimate control over modeling 3D objects

 Assembler language of computer graphics

Foundations for high-performance graphics

 Many APIs built on the top of OpenGL

4

What Is OpenGL?

GL routine has a prefix gl

 glColor()

Head file for GL-library calls

 #include <GL/gl.h>

Software information and download

 http://www.opengl.org

5

OpenGL Command Syntax

OpenGL functions

 Prefix gl and initial capital letters for each word

 making up the function name

 glVertex() glClearColor()

OpenGL defined constants

 Begin with GL_, use all capital letters, and use

 underscore to separate words

 GL_COLOR_BUFFER_BIY GL_TRIANGLES

6

OpenGL Command Syntax
Suffixes in functions

 void glVertex{234}{sifd}[v](TYPE coords)

 2 or 3 or 4 means the # of arguments to be given

 s or i or f or d means date type
 v means a pointer to a vector or array of three values

 glVertex3f(2.0, 4.0, 1.0);

 Three floating-point numbers for three arguments

 Glfloat dvect[3]={2.0, 4.0, 1.0};

 glVertex3fv(dvect);

 Representation of three arguments by a vector dvect

7

OpenGL Data Types

10/2/2011 8

OpenGL Related Libraries

10/2/2011 9

 Libraries for extending different window and operating

systems to support OpenGL

 Different OpenGL extensions

 GLX: X Window

 AGL: Apple Mac

 PGL: IBM OS/2 Warp

 WGL: Microsoft Windows NT and Windows 95

OpenGL Related Libraries

OpenGL Utility Library: GLU

 Routines for special tasks

 Matrices for viewing orientations and projections

 Polygon tessellation

 Surfaces Rendering

 Prefix glu

 #include<GL/glu.h>

10

OpenGL Related Libraries

OpenGL Utility Toolkit: GLUT

 Window-system independent

 Prefix glut

 #include <GL/glut.h>

Window management

 Creating window and handling input events

Modeling 3D objects

 High-level drawing commands built on top of OpenGL

11

Window Management

Initializing and Creating a Window

 void glutInit(int *argc, char **argv);

 Initializes the GLUT

 Appears before any other GLUT routine

 void glutInitDisplayMode(unsigned int mode);

 Specifies a display mode(color mode or buffer)

 A double-buffered and RGBA color mode window:

 glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGBA);

12

Window Management

void glutInitWindowPosition(int x, int y);

 Specifies the location of the upper-left corner of the window

void glutInitWindowSize(int width,int height);

 Specifies window’s size in pixels

void glutCreateWindow(char* name);

Opens window with previously set characteristics(display

mode, size, etc)

Window is not displayed until glutMainLoop() is called

13

Window Management

Handling window and input events

Callback functions to specify specific events, e.g. mouse click,

keyboard input

Register these functions before entering the main loop

void glutDisplayFunc(void (*func)(void));

 Specifies the function that is called whenever the contents of

the window need to be redrawn

14

Window Management
void glutMouseFunc(void (*func)(int button, int state, int x, int

y));

 Specifies the function, func, that’s called when a mouse button
is pressed or released

void glutMotionFunc(void (*func)(int x, int y));

 Specifies the function, func, that’s called when the mouse
pointer moves with the mouse button being pressed

15

Window Management
void glutKeyboardFunc(void (*func)(unsigned int key, int x, int

y));

 Specifies the function, func,that’s called when a key is pressed

void glutReshapeFunc(void (*func)(int width, int height));

 Specifies the function that’s called whenever the window is
resized or moved

 Func restablishes the rectangular region as a new rendering
canvas and adjust coordinate system

16

Window Management
Managing a background process

void glutIdleFunc(void (*func)(void));

 Specifies the function, func, to be executed if no other events are

pending

 If NULL(zero) is passed in, execution of the function is disabled

void glutPostRedisplayFunc(void);

 Marks the current window as needing to be redrawn

 At the next opportunity, the callback function registered by

glutDisplayFunc() is called

17

Window Management

Running the program

GLUT program enters an“event-processing loop”

void glutMainLoop(void);

 Enters the GLUT processing loop, never returns

Registered callback functions will be called when the

corresponding events occur

18

Drawing 3D Objects with GLUT
GLUT has many high-level drawing routines

Two flavors of model

 Wireframe without surface normal

 void glutWireCube(Gldouble size);

 void glutWireSphere(Gldouble radius, Glint slices, Glint stacks);

 Solid with shading and surface normal

 void glutSolidCube(Gldouble size);

 void glutSolidSphere(Gldouble radius, Glint slices, Glint stacks);

 Other exaples

 torus, icosahedron, octahedron, cone, teapot

19

Important OpenGL Operations
Clearing the window

 Clear the color buffer filled by the last picture before drawing

 glClearColor(0.0, 0.0, 0.0, 0.0);

 glClear(GL_COLOR_BUFFER_BIT);

Specifying a color

 Set the color to red (RGB mode) before any drawing

 glColor3f(1.0, 0.0, 0.0);

Forcing completion of drawing

 Force previous commands to begin execution

 void glFlush(void);

 Particularly useful in client-server framework

20

OpenGL Setup

10/2/2011 21

1). Check: http://www.ece.lsu.edu/xinli/OpenGL/GLUTSetup.htm
 to download the precompiled libraries you need.

2). Download the “HelloWorld” program from:

 http://www.ece.lsu.edu/xinli/OpenGL/program1.cpp

3). Create a Win32 console project, include this “program1.cpp”, then
 compile and run it.

4). If you get linker errors or run-time errors, your system
 environment might not be compatible with the precompiled
 libraries. You might need to go back to 1) and download the
 source codes, compile them in your system. Then use the
 libraries (glut.h, glut32.lib, glut32.dll) newly generated.

http://www.ece.lsu.edu/xinli/OpenGL/GLUTSetup.htm
http://www.ece.lsu.edu/xinli/OpenGL/GLUTSetup.htm

Examples 1: OpenGL Program

Draws a red sphere in a white window

#include <GL/glut.h>

void display (void)

{

 glClearColor(1.0, 1.0, 1.0, 0.0);

 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(1.0, 0.0, 0.0);

 glutSolidSphere(0.4, 50, 40);

 glFlush();

}

int main(int argc, char** argv)

{

 glutInit(&argc, argv);

 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

 glutInitWindowSize(500, 500);

 glutInitWindowPosition(100, 100);

 glutCreateWindow(”A red sphere in a white window");

 glutDisplayFunc(display);

 glutMainLoop();

 return 0;

}
22

Simplified Example 1

10/2/2011 23

Using default settings for window and drawing color

#include <GL/glut.h>

void display (void)

{
glClear (GL_COLOR_BUFFER_BIT);
glutSolidSphere(0.4,50,40);
glFlush();

}

int main (int argc, char **argv)

{
glutInit (&argc,argv);
glutCreateWindow ("A white sphere in the black window");
glutDisplayFunc(display);
glutMainLoop();

}

Example 2: Keyboard Input

 Draws a different object when different key is pressed

 t for triangle

 c for circle

 s for square

 Drawing view remains unchanged with change in window

size

10/2/2011 24

Menus

10/2/2011 25

 GLUT provides one important widget: menus

 Pop-up menus

 Three steps in defining a menu
 Decide what entries are in the menu

 Tie specific actions to the rows

 Tie each menu to a mouse button

 Relevant functions

 glutCreateMenu() glutSetMenu()

 glutAddMenuEntry() glutAttachMenu()

 glutAddSubMenu()

SubWindows and Multiple Windows

10/2/2011 26

 Create a top-level window name and returns an identifier for it

 glutCreateWindow (name)

 When a window is created, it becomes the current window,

which can be changed by

 glutSetWindow (id)

 Each window has its own properties, called context

 Create a subwindow of parent and returns its id. The subwindow

has its origin at (x,y) and has size width by height in pixels

 glutCreateSubWindow (parent, x, y, width, height)

 glutPostWindowRedisplay (wind)

OpenGL as a state machine

Can be put into various states (modes) that

remain in effect until they are changed

 Current color

 Current viewing and projection transformations

 Position and characteristics of light sources

State variables are queryable

 glGetFloatv(GL_CURRENT_COLOR, params);

By default, these states either have some values or are

inactive

Many states can be turned on and off with

 glEnable() and glDisable() 27

Graphics Pipeline

10/2/2011 28

 OpenGL rendering pipeline

 a series of processing stages from vertex data to display

Stages in Rendering Process

10/2/2011 29

 Vertex data: Data for geometric objects consist of vertices

 Per-Vertex operations: Translations and rotations are performed for
some vertices. Positions in the 3D world are projected onto positions on the screen.
Lighting calculations are performed using the vertices, surface normal, light
sources, and material properties.

 Primitive assembly: Clipping eliminates portions of geometry, which fall outside
the screen

 Rasterizations: Conversion of geometric data into fragments. Each fragment
square corresponds to a pixel in the framebuffer. Color and depth (z coordinate)
values are assigned.

 Pre-fragment operations: Hidden surface removal using the depth buffer (z
buffer) or alpha blending for transparent materials

 Framebuffer: A collocation of buffers that store data for screen pixels (screen is,
for example, 1024 pixels wide and 1024 pixels high) such as color, depth
information for hidden surface removal, ect.

OpenGL Basics: Summary

10/2/2011 30

 OpenGL and related libraries

 Window Management

 Basic structure of OpenGL program

 OpenGL as a state machine

 Graphics pipeline

Resources:

10/2/2011 31

There are many online resources about OpenGL:

1. The OpenGL official website http://www.opengl.org/ find coding

resources, documentation, tutorials…

2. Nate Robins OpenGL website:

 http://www.xmission.com/~nate/index.html

3. OpenGL Tutorials at NeHe http://nehe.gamedev.net/

4. And so on…

http://www.opengl.org/
http://www.opengl.org/
http://www.xmission.com/~nate/index.html
http://www.xmission.com/~nate/index.html
http://www.xmission.com/~nate/index.html
http://nehe.gamedev.net/
http://nehe.gamedev.net/
http://nehe.gamedev.net/

Drawing Geometric Objects

10/2/2011 32

Drawing Primitives

10/2/2011 33

 OpenGL sets three types of drawing primitives

 Points

 Lines

 Polygons, e.g, triangles

 All primitives are represented in terms of vertices

 that define the positions of the points themselves or the

 ends of line segments or the corners of polygons

OpenGL Primitives

10/2/2011 34

 Geometric object is described by a set of vertices (glVertex*) and

the type of the primitive to be drawn

 GL_POINTS

 GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP

 GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN

 GL_QUADS, GL_QUAD_STRIP

 GL_POLYGON

OpenGL Primitives

10/2/2011 35

Points

10/2/2011 36

 Objects of zeros dimension (infinitely small)

 Specified by a set of floating-point numbers (coordinates)

called a vertex

 Displayed as a singled pixel on screen

 void glPointSize (Glfloat size);

 Sets the size of a rendered point in pixels

Specifying Vertices

10/2/2011 37

 Void glVertex{234}{sidf}[v](TYPE coords);

 Specifies a vertex for use in describing a geometric object
 glVertex2s(2,4);

 glVertex4f(2.3,1.0,-2.2,1.0);

 Gldouble dvect[3] = {5.0,9.0,4.0};

 glVertex3dv(dvect);

 OpenGL works in homogeneous coordinates

 vertex:: (x,y,z,w)

 w=1 for default

Displaying Vertices

10/2/2011 38

 Bracket a set of vertices between a call to glBegin() and a call

to glEnd() pair
 The argument GL_POINTS passed to glBegin() means drawing

vertices in the form of the points

 glBegin(GL_POINTS);

 glVertex2f(0.0,0.0);

 glVertex2f(4.0,0.0);

 glVertex2f(4.0,4.0);

 glVertex2f(0.0,4.0);

glEnd();

 Other drawing options for vertex-data list
Lines (GL_LINES)

Polygon (GL_POLYGON)

Lines

10/2/2011 39

 The term line refers to a line segment

 Specified by the vertices at their endpoints

 Displayed solid and one pixel wide

 Smooth curves from line segments

Drawing Lines

10/2/2011 40

 To draw a vertex-data list as lines

glBegin(GL_LINES);

glVertex2f(0.0, 0.0);

glVertex2f(4.0, 0.0);

glVertex2f(4.0, 4.0);

glVertex2f(0.0, 4.0);

glEnd();

 GL_LINE_STRIP

 A series of connected lines

 GL_LINE_LOOP

 A closed loop

Wide and Stippled Lines

10/2/2011 41

 void glLineWidth(GLfloat width);

 Sets the width in pixels for rendered lines

 void glLineStipple(GLint factor, GLshort pattern);

 Sets the current stippling pattern (dashed or dotted) for lines

 Pattern is a 16-bit series of 0s and 1s

 1 means one pixel drawing, and 0 not drawing

 Factor stretches the pattern multiplying each bit

 Trun on and off stippling
glEnable(GL_LINE_STIPPLE)

glDisable(GL_LINE_STIPPLE)

Example of Stippled Lines

10/2/2011 42

 glLineStipple(1, 0x3F07);

 Pattern 0x3F07 translates to 0011111100000111

 Line is drawn with 3 pixels on, 5 off, 6 on, and 2 off

 glLineStipple(2, 0x3F07);

 Factor is 2

 Line is drawn with 6 pixels on, 10 off, 12 on, and 4 off

Polygon

10/2/2011 43

 Areas enclosed by single closed loops of line segments

 Specified by vertices at the corners

 Displayed as solid with the pixels in the interior filled in

 Examples: Triangle and Pentagon

Polygon Tessellation

10/2/2011 44

 Simple and convex polygon

 Triangle

 Any three points always lie on a plane

 Polygon tessellation

 Nonsimple or nonconvex polygons can be represented in

 the form of triangles

 Curved surfaces can be approximated by polygons

Drawing Polygon

10/2/2011 45

 Draw a vertex-data list as a polygon

glBegin(GL_POLYGON);

glVertex2f(0.0, 0.0);

glVertex2f(4.0, 0.0);

glVertex2f(4.0, 4.0);

glVertex2f(0.0, 4.0);

glEnd();

 GL_TRIANGLES

 Draws first three vertices as a triangle

 GL_QUADS

 Quadilateral is a four-sided polygon

Drawing Polygons

10/2/2011 46

 GL_TRIANGLE_STRIP

Draws a series of triangles using

vertices in the order
v0,v1,v2; v2,v1,v3

v2,v3,v4; v4,v3,v5

All triangles are drawn with the

same orientation (clockwise order)

 GL_TRIANGLE_FAN

 One vertex is in common to all triangles

 Clockwise orientation

 GL_QUAD_STRIP

 Draws a series of quadrilaterals

Polygons as Points and Outlines

10/2/2011 47

 void glPolygonMode(GLenum face, Glenum mode);

 Controls the drawing mode for a polygon’s front and back

 faces

 glPolygonMode(GL_FRONT, GL_FILL);

 glPolygonMode(GL_BACK, GL_LINE);

 glPolygonMode(GL_FRONT_AND_BACK, GL_POINT);

 By convention, polygons whose vertices appear in

counterclockwise order are front-facing

 GL_CCW

Deciding Front- or Back Facing

10/2/2011 48

 Decision based the sign of the polygon’s area, a computed in

window coordinates

 For GL_CCW, if a > 0 means the polygon be front-facing,

 then a < 0 means the back-facing

 For GL_CW, if a < 0 for front-facing, then a > 0 for back-

facing

Reversing and Culling Polygons

10/2/2011 49

 void glFrontFace(GLenum mode);

 Controls how front-facing polygons are determined

 Default mode is GL_CCW (vertices in counterclockwise order)

 Needs to be enabled

 void glCullFace(GLenum mode);

 Indicates which polygons (back-facing or front-facing)

 should be discarded (culled)

 Needs to be enabled

Stippling Polygons

10/2/2011 50

 Void glPolygonStipple(const GLbyte *mask);

Defines the current stipple pattern for the filled polygons

The argument is a pointer to a 32x32 bitmap (a mask of 0s and 1s)

 Needs to be enabled and disabled
glEnable(GL_POLYGON_STIPPLE);

glDisable(GL_POLYGON_STIPPLE);

Normal Vectors

10/2/2011 51

 Points in a direction that is perpendicular to a surface

 The normal vectors are used in lighting calculations

 void glNormal3(bsidf)(TYPE nx, TYPE ny, TYPE nz);

 Sets the current normal vector as specified by the arguments

 void glNormal3(bsidf)v(const TYPE *v);

 Vector version supplying a single array v of three element

Finding Normal Vector

10/2/2011 52

 Surfaces described with polygonal data

Calculate normal vector for each polygonal facet

Average these normals for neighboring facets

Use the averaged normal for the vertex that the neighboring facets have

 in common

 Using normal vectors in lighting model to make surface appear

smooth rather than facet

Finding Normal Vector

10/2/2011 53

 Make two vectors from any three vertices v1, v2 and v3

 P = v1 - v2; Q = v2 - v3

 Cross product of these vectors is perpendicular to polygonal

surface
N = P x Q = [Px Py Pz] x [Qx Qy Qz]

= [PyQz-QyPz) (QxPz-PxQz) (PxQy-QxPy]

= [Nx Ny Nz]

 Normalize the vector
n = [nx ny nz] = [Nx/L Ny/L Nz/L]

where L is length of the vector [Nx Ny Nz]

Vertex Arrays

10/2/2011 54

 OpenGL has vertex array routines to specify a lot of vertex-

related data with a few arrays

 To reduce the number of function calls

 To avoid processing of shared vertices

 Three steps in using vertex arrays

 Activate up to eight arrays

 Put data into the arrays

 Render geometry with the data

Step1: Enabling Arrays

10/2/2011 55

 void glEnableClientState(GLenum array);

 Specifies the array to enable

 Parameter array defines the type (up to eight types)

GL_VERTEX_ARRAY

GL_COLOR_ARRAY

GL_NORMAL_ARRAY

 glEnableClientState(GL_NORMAL_ARRAY);

 void glDisableCleintState(GLenum array);

 Specifies the array to disable

 glDisableClientState(GL_NORMAL_ARRAY);

Step2: Specifying Data for the Arrays

10/2/2011 56

 void glVertexPointer(GLint size, GLenum type, Glsizei stride,

const GLvoid *pointer);

 Specifies where vertex (spatial coordinate) data can be accessed

 Pointer is the memory address of the first coordinate of the first

 vertex in the array

Static GLint vertices[] = (2.0, 4.0, 1.5, ….)

glVertexPointer(3, GL_FLOAT, 0, vertices);

 void glColorPointer(GLint size, GLenum type, GLsizei

 stride, const GLvoid *pointer);

 void glNormalPointer(GLenum type, GLsizei stride,

 const GLvoid *pointer);

Step3: Dereferencing and Rendering

10/2/2011 57

 void glArrayElement(GLint ith);

 Obtains the data of one (the ith) vertex for all enabled arrays

 Called between glBegin() and glEnd()

 void glDrawElements(GLenum mode, GLsizei count, GLenum
type, void *indices);

 Defines a sequence of geometric primitives (mode) using count

 number of elements with indices in the array indices

 void glDrawArrays(GLenum mode, GLint first, Glsizei count);

 Constructs a sequence of geometric primitives (mode) using

 array elements starting at first and ending at first+count-1

Building Polygonal Models of Surfaces

10/2/2011 58

 You can approximate smooth surfaces by polygons

 Important points

 Polygon orientation consistency (all clockwise or all anticlockwise)

 Caution at non-triangular polygons

 Trade-off between display speed and image quality

Examples

10/2/2011 59

 Building an icosahedron

Examples

10/2/2011 60

 Polygonal approximation to a sphere

