Outline	Complex	Planar Models	Surface Classification
	Basic Surface	Topology - III	
	Via C		
	Xin Sr	hane Li	
	Septembe	er 14, 2011	
	·	,	

Outline	Complex	Planar Models	Surface Classification

Simplicial Complex

Planar Models

Surface Classification

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 二臣 - 釣�?

Outline	Complex	Planar Models	Surface Classification
Simplicia	al Complex - Sim	nplex	

> All smooth surfaces can be triangulated.

Outline	Complex		Planar Models	Surface Classification
<u> </u>		<u> </u>		

Simplicial Complex - Simplex

- All smooth surfaces can be triangulated.
- ▶ Refine the triangulation → the mesh becomes closer to the original smooth surface.

Outline	Complex	Planar Models	Surface Classification

Simplicial Complex - Simplex

- > All smooth surfaces can be triangulated.
- ► Refine the triangulation → the mesh becomes closer to the original smooth surface.

Definition (Simplex)

Suppose k + 1 points $\{v_0, v_1, \ldots, v_k\}$ are in general positions in \mathbb{R}^n , $n \ge k + 1$, the standard simplex $[v_0, v_1, \ldots, v_k]$ is the minimal convex set including all of them,

$$\sigma = [\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k] = \{ x \in \mathbb{R}^n | x = \sum_{i=0}^k \lambda_i \mathbf{v}_i, \sum_{i=0}^k \lambda_i = 1, \lambda_i \ge 0 \},\$$

we call v_0, v_1, \ldots, v_k as the vertices of the simplex σ . Suppose $\tau \subset \sigma$ is also a simplex, then we say τ is a facet of σ .

Outline	Complex	Planar Models	Surface Classification

Orientation of a Simplex

Simplexes are oriented. Each simplex has two orientations, defined as the following:

Outline	Complex	Planar Models	Surface Classification

Orientation of a Simplex

Simplexes are oriented. Each simplex has two orientations, defined as the following:

Definition (Orientation of a Simplex)

Suppose k + 1 points $\{v_0, v_1, \ldots, v_k\}$ are in the general positions in $\mathbb{R}^n, n \ge k + 1$. The orientation of a simplex $[v_{i_0}, v_{i_1}, \ldots, v_{i_k}]$ is positive, if the permutation (i_0, i_1, \ldots, i_k) differs from $(0, 1, \ldots, k)$ by an even number of two-element swaps; otherwise, the orientation is negative.

イロト 不得下 不足下 不足下 一足

Outline	Complex	Planar Models	Surface Classification
Simplicia	I Complex		

 Simplexes can be coherently glued together to form complexes.

Outline	Complex	Planar Models	Surface Classification
Simplicia	I Complex		

- Simplexes can be coherently glued together to form complexes.
- Definition (Simplicial Complex)

A simplicial complex $\boldsymbol{\Sigma}$ is a union of simplices, such that:

- 1. If a simplex σ belongs to $\Sigma,$ then all its facets also belongs to $\Sigma;$
- 2. If $\sigma_1, \sigma_2 \subset K, \sigma_1 \bigcap \sigma_2 \neq \emptyset$, then the intersection of σ_1 and σ_2 is also a common facet.

Outline	Complex	Planar Models	Surface Classification
Simplicia	I Complex		

- Simplexes can be coherently glued together to form complexes.
- Definition (Simplicial Complex)

A simplicial complex $\boldsymbol{\Sigma}$ is a union of simplices, such that:

- 1. If a simplex σ belongs to Σ , then all its facets also belongs to Σ ;
- 2. If $\sigma_1, \sigma_2 \subset K, \sigma_1 \bigcap \sigma_2 \neq \emptyset$, then the intersection of σ_1 and σ_2 is also a common facet.
- Triangular meshes are simplicial complexes (vertex, oriented edges, and oriented faces are 0-simplexes, 1-simplexes, and 2-simplexes respectively).

Outline	Complex	Planar Models	Surface Classification
Definitions			

Outline	Complex	Planar Models	Surface Classification
Definitions			

Definition (Planar Model)

A planar model for a surface S is a polygon in \mathbb{E}^2 with an identification on edges s.t. the resulting surface is S. We permit polygons with curved edges to allow the "2-sided polygon".

Outline	Complex	Planar Models	Surface Classification
B (1.1.1			
Definitions			

Definition (Planar Model)

A planar model for a surface S is a polygon in \mathbb{E}^2 with an identification on edges s.t. the resulting surface is S. We permit polygons with curved edges to allow the "2-sided polygon".

▶ Denote edges by lowercase letters, each has a direction. A curve path can be denoted as a sequence of letters. On each path if it traverses in the reversed direction along the edge *a*, we write an inverse *a*⁻¹.

Outline	Complex	Planar Models	Surface Classification
D.C. IV			
Definitions			

Definition (Planar Model)

A planar model for a surface S is a polygon in \mathbb{E}^2 with an identification on edges s.t. the resulting surface is S. We permit polygons with curved edges to allow the "2-sided polygon".

▶ Denote edges by lowercase letters, each has a direction. A curve path can be denoted as a sequence of letters. On each path if it traverses in the reversed direction along the edge *a*, we write an inverse *a*⁻¹.

Definition (Word)

The sequence of letters for the boundary edges read ccw on a planar model is called the **word** for the planar model.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Outline	Complex	Planar Models	Surface Classification
Examples			

- Sphere :
- Projective plane :
- Torus :
- Klein bottle :
- 2-holed torus :

Outline	Complex	Planar Models	Surface Classification
Fxample	5		

- Sphere : aa^{-1} .
- Projective plane :
- Torus :
- Klein bottle :
- 2-holed torus :

Outline	Complex	Planar Models	Surface Classification
Fxamples			

- Sphere : aa^{-1} .
- Projective plane : *aa*.
- Torus :
- Klein bottle :
- 2-holed torus :

Outline	Complex	Planar Models	Surface Classification
Fxamples			

- Sphere : aa^{-1} .
- Projective plane : aa.
- Torus : $aba^{-1}b^{-1}$.
- Klein bottle :
- 2-holed torus :

Outline	Complex	Planar Models	Surface Classification
Fxamples			

- Sphere : aa^{-1} .
- Projective plane : aa.
- Torus : $aba^{-1}b^{-1}$.
- ► Klein bottle : *abab*⁻¹.
- 2-holed torus :

Outline	Complex	Planar Models	Surface Classification
Evamples			

• Sphere : aa^{-1} .

- Projective plane : aa.
- Torus : $aba^{-1}b^{-1}$.
- ► Klein bottle : *abab*⁻¹.
- 2-holed torus : $aba^{-1}b^{-1}cdc^{-1}d^{-1}$.

Outline	Complex	Planar Models	Surface Classification
Evamples	•		

- Sphere : aa^{-1} .
- Projective plane : aa.
- Torus : $aba^{-1}b^{-1}$.
- ▶ Klein bottle : *abab*⁻¹.
- 2-holed torus : $aba^{-1}b^{-1}cdc^{-1}d^{-1}$.

If two words W_1 and W_2 both represent the same surface, then we say that the words are equivalent, and write $W_1 \sim W_2$.

Outline	Complex	Planar Models	Surface Classification
Evamples			

- Sphere : aa^{-1} .
- Projective plane : aa.
- Torus : $aba^{-1}b^{-1}$.
- ▶ Klein bottle : *abab*⁻¹.
- 2-holed torus : $aba^{-1}b^{-1}cdc^{-1}d^{-1}$.

If two words W_1 and W_2 both represent the same surface, then we say that the words are equivalent, and write $W_1 \sim W_2$. A surface could have more than one words.

Outline	Complex	Planar Models	Surface Classification
Theorems			

- Every closed surface can be triangulated. A triangulation of a surface follows the coherent rule of the simplicial complex.
- Every closed connected surface has a planar model.

Outline	Complex	Planar Models	Surface Classification
Theorems			
THEOLEHIS			

- Every closed surface can be triangulated. A triangulation of a surface follows the coherent rule of the simplicial complex.
- Every closed connected surface has a planar model. (To show it: the surface can be triangulated, the triangulation mesh can be embedded onto the plane glued together.)

Outline	Complex	Planar Models	Surface Classification
Theorems			

- Every closed surface can be triangulated. A triangulation of a surface follows the coherent rule of the simplicial complex.
- Every closed connected surface has a planar model. (To show it: the surface can be triangulated, the triangulation mesh can be embedded onto the plane glued together.)
- Each letter in a word for a planar model for a closed surface appears exactly twice. If both instances of each letter have different exponents and the planar model is triangulated, the the triangulated surface is orientable. If some letters appears twice with the same exponent and the planar model is triangulated, then the triangulates surface is nonorientable.

イロト 不得下 不足下 不足下

Outline	Complex	Planar Models	Surface Classification
Classifica	ation Theorem		

- This theorem simply indicates that any closed orientable surface can be classified by its genus.
- Its proof is tedious and not required (the following slides)...

Outline	Complex	Planar Models	Surface Classification

Word Concatenation and Surface Connected Sum

Definition

The concatenation of words W_1 and W_2 is the word consisting of all the letters of W_1 (in order) followed by the letters of W_2 (in order), denoted as W_1W_2 .

e.g.
$$W_1 = aba^{-1}b^{-1}$$
, $W_2 = cdc^{-1}d^{-1}$, then
 $W_1W_2 = aba^{-1}b^{-1}cdc^{-1}d^{-1}$. (Fig.)

Outline	Complex	Planar Models	Surface Classification

Word Concatenation and Surface Connected Sum

Definition

The concatenation of words W_1 and W_2 is the word consisting of all the letters of W_1 (in order) followed by the letters of W_2 (in order), denoted as W_1W_2 .

e.g.
$$W_1 = aba^{-1}b^{-1}$$
, $W_2 = cdc^{-1}d^{-1}$, then
 $W_1W_2 = aba^{-1}b^{-1}cdc^{-1}d^{-1}$. (Fig.)

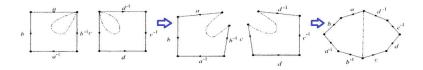
Theorem

Let W_1 and W_2 be representative words for surfaces S_1 and S_2 . A word for $S_1 \# S_2$ is $W_1 W_2$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline	Complex	Planar Models	Surface Classification

Pairs of 1st and 2nd Kinds



A pair of ... x ... x ... is called a **a pair of the 1st kind**;
 A pair of ... x ... x⁻¹ ... is called a **a pair of the 2nd kind**.

Outline	Complex	Planar Models	Surface Classification
Rules-I			

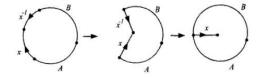
• **Permutation Rule**: If $x_1x_2...x_n$ is a word for a surface *S*, then $x_kx_{k+1}...x_nx_1...x_{k-1}$ is also a word for *S*.

Outline	Complex	Planar Models	Surface Classification
Dulas			
Rules-I			

- ▶ Permutation Rule: If x₁x₂...x_n is a word for a surface S, then x_kx_{k+1}...x_nx₁...x_{k-1} is also a word for S.
- ▶ Inverse Rule: If $W = x_1 x_2 \dots x_n$ is a word for a surface S, then $W^{-1} = x_n^{-1} \dots x_1^{-1}$ is also a word for S.

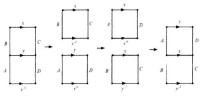
Outline Complex Planar Models Surface Classification
Rules-I

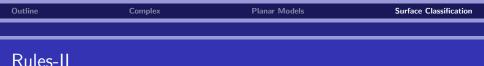
- ▶ Permutation Rule: If x₁x₂...x_n is a word for a surface S, then x_kx_{k+1}...x_nx₁...x_{k-1} is also a word for S.
- ▶ Inverse Rule: If $W = x_1 x_2 ... x_n$ is a word for a surface S, then $W^{-1} = x_n^{-1} ... x_1^{-1}$ is also a word for S.
- ► Cancelation Rule: If Axx⁻¹B is a word for a surface S and either A or B is nonempty, then AB is also a word for S.



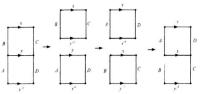
Outline	Complex	Planar Models	Surface Classification
Rules-II			

Cylinder Cut-and-Paste Rule: If ABxCDx⁻¹ is a word for a surface S, then BAxDCx⁻¹ is also a word for S.

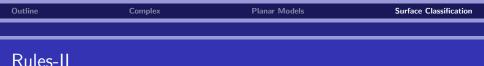




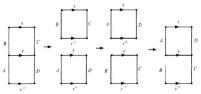
Cylinder Cut-and-Paste Rule: If ABxCDx⁻¹ is a word for a surface S, then BAxDCx⁻¹ is also a word for S.



► Möbius Strip Cut-and-Paste Rule: If AxBxC is a word for a surface S, then AxxB⁻¹C is also a word for S.



Cylinder Cut-and-Paste Rule: If ABxCDx⁻¹ is a word for a surface S, then BAxDCx⁻¹ is also a word for S.



► Möbius Strip Cut-and-Paste Rule: If AxBxC is a word for a surface S, then AxxB⁻¹C is also a word for S.

イロト イヨト イヨト

Outline	Complex	Planar Models	Surface Classification

Theorem

1. Simplify:
$$W = Axy^{-1}zBxy^{-1}z \rightarrow W = AxBx$$
.

Outline	Complex	Planar Models	Surface Classification

Theorem

- 1. Simplify: $W = Axy^{-1}zBxy^{-1}z \rightarrow W = AxBx$.
- 2. **Reduce to One Vertex**: If there are more than one vertices on the boundary of the planar model *P*, keep removing them until there is only vertex on the boundary.

Outline	Complex	Planar Models	Surface Classification

Theorem

- 1. Simplify: $W = Axy^{-1}zBxy^{-1}z \rightarrow W = AxBx$.
- 2. Reduce to One Vertex: If there are more than one vertices on the boundary of the planar model P, keep removing them until there is only vertex on the boundary. (Think about T^2 .)

Outline	Complex	Planar Models	Surface Classification

Theorem

Any closed surface is homeomorphic to a sphere with g handles (i.e. g-holed torus) or sphere with k crosscaps.

- 1. Simplify: $W = Axy^{-1}zBxy^{-1}z \rightarrow W = AxBx$.
- 2. Reduce to One Vertex: If there are more than one vertices on the boundary of the planar model P, keep removing them until there is only vertex on the boundary. (Think about T^2 .) <u>Proof:</u> suppose $b = (u \rightsquigarrow v)$,
 - ▶ if there are no other vertex u appears on the boundary ∂P, then u connects b and b⁻¹, and can be canceled.

・ロン ・ 同 と ・ ヨ と ・ ヨ と … ヨ

▶ otherwise, find the corresponding edge and reduce the appearance of u on ∂P by one. (Fig.)

Outline	Complex	Planar Models	Surface Classification

3. **Collect crosscaps**: For each edge *a* that occurs twice in *W* in the same exponent, we can use Möbius strip cut-and-paste rule to rearrange *W* so that these edges appear consecutively in *W*. If all edges come in pairs with the same exponent, then *S* is a sphere with *k* crosscaps, where *k* is the number of pairs of edges.

Outline	Complex	Planar Models	Surface Classification

- 3. **Collect crosscaps**: For each edge *a* that occurs twice in *W* in the same exponent, we can use Möbius strip cut-and-paste rule to rearrange *W* so that these edges appear consecutively in *W*. If all edges come in pairs with the same exponent, then *S* is a sphere with *k* crosscaps, where *k* is the number of pairs of edges.
- 4. **Collect handles**: Now $W = AxBx^{-1}$. Find the closest two corresponding blocks *x*, then

$$W = [Ax][B]y[C][x^{-1}D]y^{-1},$$

$$W = [B][Ax]y[x^{-1}D][C]y^{-1} = x[y][]x^{-1}[DC][y^{-1}BA],$$

$$W = x[][y]x^{-1}[y^{-1}BA][DC] = xyx^{-1}y^{-1}BADC.$$

Outline	Complex	Planar Models	Surface Classification
Classificat	tion Theorem a	nd Proof	
ightarrow any s		$y_m a_m x_1 y_1 x_1^{-1} y_1^{-1} \cdots x_n y_n x_n^{-1}$ Möbius strips and <i>n</i> handle	
5. Co	mbine crosscaps and	handles : If there are no	crosscaps, then S

is a g-holed torus. Otherwise, we can iteratively combine each handle with a crosscap to create three crosscaps, and finally get a sphere with k crosscaps.

Proposition

The direct sum of a torus with a projective plane is homeomorphic to the connected sum of three projective planes.

イロン 不同と 不同と 不同とう

Outline	Complex	Planar Models	Surface Classification
Classifica	tion Theorem a	nd Proof	
ightarrow any s		$a_m a_m x_1 y_1 x_1^{-1} y_1^{-1} \cdots x_n y_n x_n$ Möbius strips and <i>n</i> handle	
5. Co	mbine crosscaps and	I handles: If there are no	crosscaps, then S

is a *g*-holed torus. Otherwise, we can iteratively combine each handle with a crosscap to create three crosscaps, and finally get a sphere with *k* crosscaps.

Proposition

The direct sum of a torus with a projective plane is homeomorphic to the connected sum of three projective planes.

(keep applying Möbius strip cut-and-paste rule:)

$$W = aba^{-1}b^{-1}cc = a^{-1}b^{-1}cb^{-1}a^{-1}c,$$

= $abbc^{-1}ac = bbc^{-1}aca = bbc^{-1}c^{-1}aa.$