\cap		+1		~	
U	u	u		e	

Basic Surface Topology - II

Xin Shane Li

September 12, 2011

Orientability

Connected Sum

Product

▲日 → ▲圖 → ▲目 → ▲目 → ▲目 →

Outline	Orientability	Connected Sum	Product
A Mirrore	d Traversal		

There is another planet in the 2-D universe:

Everyone that goes north will come back normally from south;

Outline	Orientability	Connected Sum	Product
A Mirrore	d Traversal		

There is another planet in the 2-D universe:

- Everyone that goes north will come back normally from south;
- Everyone that goes west will come back mirror-reflected from east.

イロト イポト イヨト イヨト

► → a Klein bottle (also imagine Mobius bands)

Outline	Orientability	Connected Sum	Product
A Mirrore	d Traversal		

There is another planet in the 2-D universe:

- Everyone that goes north will come back normally from south;
- Everyone that goes west will come back mirror-reflected from east.

- ▶ → a Klein bottle (also imagine Mobius bands)
- Exercise: the Klein bottle tic-tac-toe game.

The Klein Bottle and Mobius Band

Klein Bottle

Mobius Band

Outline	Orientability	Connected Sum	Product
Orientability			

Definition (Orientation-reversing Path)

A path in a 2-manifold or 3-manifold that brings a traveler back to his starting point mirror-reversed is called an **orientation-reversing path**.

Theorem (Orientability)

Manifolds that don't contain orientation-reversing paths are called **orientable**, manifolds that do are called **nonorientable**.

Outline	Orientability	Connected Sum	Product
Orientability			

Definition (Orientation-reversing Path)

A path in a 2-manifold or 3-manifold that brings a traveler back to his starting point mirror-reversed is called an **orientation-reversing path**.

Theorem (Orientability)

Manifolds that don't contain orientation-reversing paths are called **orientable**, manifolds that do are called **nonorientable**.

• Orientable manifolds: tori, infinite planes, spheres, 3-tori, ...

Outline	Orientability	Connected Sum	Product
Orientability			

Definition (Orientation-reversing Path)

A path in a 2-manifold or 3-manifold that brings a traveler back to his starting point mirror-reversed is called an **orientation-reversing path**.

Theorem (Orientability)

Manifolds that don't contain orientation-reversing paths are called **orientable**, manifolds that do are called **nonorientable**.

- Orientable manifolds: tori, infinite planes, spheres, 3-tori, ...
- Nonorientable manifolds: Klein bottle, Mobius bands, projective planes, nonorientable 3-tori, ...

イロト 不得下 不足下 不足下 一足

0	• •	41	in	~
	u	u		e

Notations/Abbreviations

E^2 : the Euclidean plane	S^2 : the sphere
T^2 : the torus	<i>K</i> ² : the Klein bottle
P^2 : the projective plane	D^2 : the disk
E^3 : the Euclidean 3D space	<i>T</i> ³ : the 3-torus
D^3 : a solid ball (3D disk)	P^3 : projective 3-space
E^1 : the line	S ¹ : The circle
<i>I</i> : the interval	

The Operation of Connected Sum

Definition (Connected Sum)

The connected sum $S_1 \# S_2$ is formed by deleting the interior of disks $D_i \subset S_i$ and attaching the resulting punctured surfaces $S_i - D_i$ to each other by a homeomorphism $h : \partial D_1 \to \partial D_2$, where ∂D_i represents the boundary of D_i , so

$$S_1 \# S_2 = (S_1 - D_1) \bigcup_h (S_2 - D_2).$$

റ		÷1		~
U	u	LI		e

►
$$S^2 # S^2 = ?;$$

0		+1	ь.	~
U	u	LI		e

0	• •	41	in	~
U	u	u		e

►
$$D^2 \# S^2 = ?;$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - つへで

0	• •	41	in	~
U	u	u		e

- ► $S^2 # S^2 =?;$
- ► $T^2 # S^2 = ?;$
- $D^2 \# S^2 = ?;$
- ► $D^2 # D^2 =?;$

0		.1	:	
υ	u	u	ш	e

- ► $S^2 # S^2 = ?;$
- ► $T^2 # S^2 = ?;$
- $D^2 \# S^2 =?;$
- $D^2 # D^2 =?;$
- ► $D^2 \# T^2 = ?.$

n		٠	13	'n	
U	u	L			e

► A cylinder *C* is the product of a circle and a interval:

1. a bunch of intervals arranged in a circle: $C = S^1 \times I$;

► A cylinder *C* is the product of a circle and a interval:

- 1. a bunch of intervals arranged in a circle: $C = S^1 \times I$;
- 2. a bunch of circles arranged in an interval: $C = I \times S^1$.

► A cylinder *C* is the product of a circle and a interval:

- 1. a bunch of intervals arranged in a circle: $C = S^1 \times I$;
- 2. a bunch of circles arranged in an interval: $C = I \times S^1$.

Figure.

- ► A cylinder *C* is the product of a circle and a interval:
 - 1. a bunch of intervals arranged in a circle: $C = S^1 \times I$;
 - 2. a bunch of circles arranged in an interval: $C = I \times S^1$.
- Figure.
- ► $T^2 = ? \times ?$

- ► A cylinder *C* is the product of a circle and a interval:
 - 1. a bunch of intervals arranged in a circle: $C = S^1 \times I$;
 - 2. a bunch of circles arranged in an interval: $C = I \times S^1$.
- Figure.
- ► $T^2 = ? \times ?$
- Figure.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- ► A cylinder *C* is the product of a circle and a interval:
 - 1. a bunch of intervals arranged in a circle: $C = S^1 \times I$;
 - 2. a bunch of circles arranged in an interval: $C = I \times S^1$.
- Figure.
- ► $T^2 = ? \times ?$
- Figure.
- The torus is the only closed surface that is a product.

Outline	Orientability	Connected Sum	Product
Product -	More		

► *I* × *I* =?

Outline	Orientability	Connected Sum	Product
Product -	More		

•
$$E^1 \times E^1 = ?$$

Outline	Orientability	Connected Sum	Product
Product -	More		

•
$$E^1 \times E^1 = ?$$

•
$$S^1 \times E^1 = ?$$

Outline	Orientability	Connected Sum	Product
-			
Product -	More		

- ► *I* × *I* =?
- $E^1 \times E^1 = ?$
- $S^1 \times E^1 = ?$
- ► $E^1 \times I = ?$

Outline	Orientability	Connected Sum	Product
Product -	More		

•
$$E^1 \times E^1 = ?$$

•
$$S^1 \times E^1 = ?$$

$$\blacktriangleright E^1 \times I = ?$$

•
$$D^2 \times S^1 = ?$$

Outilite	Orientability	Connected Sum	Product

- ► *I* × *I* =?
- $E^1 \times E^1 = ?$
- $S^1 \times E^1 = ?$
- $E^1 \times I = ?$
- $D^2 \times S^1 = ?$
- Is the Mobius band a product?

Outilite	Orientability	Connected Sum	Product

- ► *I* × *I* =?
- $E^1 \times E^1 = ?$
- $S^1 \times E^1 = ?$
- $E^1 \times I = ?$
- $D^2 \times S^1 = ?$
- Is the Mobius band a product?
- Is the 3-torus a product?