asic Surface
pology - I
iane Li
пе
roduction
ling
otations

September 12, 2011

æ

Basic Surface Topology - I

Xin Shane Li

Outline

Introduction Gluing

1 Introduction

2 Gluing

3 Notations

Xin Shane Li Basic Surface Topology - I

æ

About Topology

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

- Topology is a fundamental branch of geometry; and a key issue to better understand 3D shapes!
- It has remarkable contributions in modern mathematics, integrating analysis, geometry, and algebra, leading to many important problems and applications.
- Intuitively, how shapes behave when free-form deformations (twisting, pulling, stretching) are allowed without ripping or tearing.
- Before more details, let's start from some basic concepts.

回 と く ヨ と く ヨ と

Basic Topology Concepts

- Topology properties of a shape: invariants under continuous transformations
 - shape, area, perimeter, curvature, parallelism... ?
 - connected-component, holes, how they segment embedded spaces...?
- Sounds very different from Euclidean geometry we imagine?

高 と く ヨ と く ヨ と

Basic Topology Concepts

Xin Shane Li

Outline

Introduction

Gluing

Notations

 Topology properties of a shape: invariants under continuous transformations

- shape, area, perimeter, curvature, parallelism... ?
- connected-component, holes, how they segment embedded spaces...?
- Sounds very different from Euclidean geometry we imagine?
- in fact, fundamentally alike:
 - In Euclidean geometry, shapes are "invariant" under rigid transformations (congruences);

(4回) (4回) (4回)

- In Topology, shapes are "invariant" under continuous transformations (homeomorphism);
- Rigid motions are always continuous.

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

- Imagine some people living on a flat planet, in 2D universe.
 - Everyone can move freely on the flat land, with local visions.
- Everyone thought their planet is a big plane...

回 と く ヨ と く ヨ と

Basic Surface Topology - I

- Xin Shane L
- Outline
- Introduction
- Gluing
- Notations

- Imagine some people living on a flat planet, in 2D universe.
 - Everyone can move freely on the flat land, with local visions.
- Everyone thought their planet is a big plane...
- except one guy: he believes their planet is a sphere, and wants to show it:
 - go east, then come back from west.

高 と く ヨ と く ヨ と

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

- Imagine some people living on a flat planet, in 2D universe.
 - Everyone can move freely on the flat land, with local visions.
- Everyone thought their planet is a big plane...
- except one guy: he believes their planet is a sphere, and wants to show it:
 - go east, then come back from west.
- He did it. But still no one believes him, maybe:

Basic Surface Topology - I

- Xin Shane L
- Outline
- Introduction
- Gluing
- Notations

- Imagine some people living on a flat planet, in 2D universe.
 - Everyone can move freely on the flat land, with local visions.
- Everyone thought their planet is a big plane...
- except one guy: he believes their planet is a sphere, and wants to show it:
 - go east, then come back from west.
- He did it. But still no one believes him, maybe:
- (Figure 1)

高 と く ヨ と く ヨ と

	A Story (2)
Basic Surface Topology - I Xin Shane Li	
Outline Introduction Gluing Notations	 He has no reply, he is ready to try it again: He goes north, and then comes back from south.

・ロト・(型ト・(型ト・(型ト・(ロト

Basic Surface Topology - I

Xin Shane Li

Outline

Introduction

Gluing

Notations

- He has no reply, he is ready to try it again:
- He goes north, and then comes back from south.
- This time he is confused:
 - the journey is much shorter
 - he marked the path last time, but he has never come across the thread he laid out on the first journey

- 4 ⊒ ▶

Basic Surface Topology - I

Xin Shane Li

Outline

Introduction

Gluing

Notations

- He has no reply, he is ready to try it again:
- He goes north, and then comes back from south.
- This time he is confused:
 - the journey is much shorter
 - he marked the path last time, but he has never come across the thread he laid out on the first journey
- if it is a giant plane. (Figure 2)

- E > - E >

Basic Surface Topology - I

Xin Shane Li

Outline

Introduction

Gluing

Notations

- He has no reply, he is ready to try it again:
- He goes north, and then comes back from south.
- This time he is confused:
 - the journey is much shorter
 - he marked the path last time, but he has never come across the thread he laid out on the first journey
- if it is a giant plane. (Figure 2)
- even a sphere should (Figure 3)

• E • • E •

Basic Surface Topology - I

- Xin Shane L
- Outline
- Introduction
- Gluing
- Notations

- No one knows the shape of the real universe is. It is a 3-manifold, but is it just ℝ³?
- What if the following happens, shall we suspect that the space is built differently than we thought it was?
 - We are heading for one direction, but find ourselves are back on earth.

高 と く ヨ と く ヨ と

Basic Surface Topology - I

- Xin Shane L
- Outline
- Introduction
- Gluing
- Notations

- No one knows the shape of the real universe is. It is a 3-manifold, but is it just ℝ³?
- What if the following happens, shall we suspect that the space is built differently than we thought it was?
 - We are heading for one direction, but find ourselves are back on earth.
 - We find the exact same star in 2 different locations in the sky.

高 と く ヨ と く ヨ と

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

- No one knows the shape of the real universe is. It is a 3-manifold, but is it just ℝ³?
- What if the following happens, shall we suspect that the space is built differently than we thought it was?
 - We are heading for one direction, but find ourselves are back on earth.
 - We find the exact same star in 2 different locations in the sky.
 - We are searching for signals from aliens, and receive a faint signal from a distant galaxy. It is (was) the broadcast of a 1990s TV show.

• • • •

Basic Surface Topology - I

Xin Shane Li

- Outline
- Introduction
- Gluing
- Notations

- Previous instances indicate the possibility that the universe might conceivably close back on itself.
- Before we can imagine that, we need to get familiar with a video game first...
 - 1 the biplanes
 - 2 the new tic-tac-toe

< 注 > < 注 >

Basic Surface Topology - I

Xin Shane Li

- Outline
- Introduction
- Gluing
- Notations

- Previous instances indicate the possibility that the universe might conceivably close back on itself.
- Before we can imagine that, we need to get familiar with a video game first...
 - 1 the biplanes
 - 2 the new tic-tac-toe
- This model is **Torus**.

★ 문 ► ★ 문 ►

Basic Surface Topology - I

Xin Shane Li

- Outline
- Introduction
- Gluing
- Notations

- Previous instances indicate the possibility that the universe might conceivably close back on itself.
- Before we can imagine that, we need to get familiar with a video game first...
 - 1 the biplanes
 - 2 the new tic-tac-toe
- This model is Torus.
- \blacksquare The feeling of gluing \rightarrow we are on it.

- < 토 ▶ < 토 ▶

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

Imagine the following solid for gluing (Figure 4)
It is a 3-Torus.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

- Imagine the following solid for gluing (Figure 4)
- It is a **3-Torus**.
- Suppose you are in it now, what do you see when you look up/down/left/...

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

- Imagine the following solid for gluing (Figure 4)
- It is a 3-Torus.
- Suppose you are in it now, what do you see when you look up/down/left/...
- Whether our universe is a 3-torus?

個 と く ヨ と く ヨ と

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

- Imagine the following solid for gluing (Figure 4)
- It is a 3-Torus.
- Suppose you are in it now, what do you see when you look up/down/left/...
- Whether our universe is a 3-torus?
 - **1** Seems not. No one has seen ourselves.

< E ▶ < E ▶</p>

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

- Imagine the following solid for gluing (Figure 4)
- It is a 3-Torus.
- Suppose you are in it now, what do you see when you look up/down/left/...
- Whether our universe is a 3-torus?
 - **1** Seems not. No one has seen ourselves.
 - 2 Maybe: it is too big, and no light has enough time to make a complete trip yet!

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

- Imagine the following solid for gluing (Figure 4)
- It is a 3-Torus.
- Suppose you are in it now, what do you see when you look up/down/left/...
- Whether our universe is a 3-torus?
 - **1** Seems not. No one has seen ourselves.
 - 2 Maybe: it is too big, and no light has enough time to make a complete trip yet!
 - 3 Maybe: the light does come back, but it is so far away, that it takes billions of years . . .

(4回) (4回) (4回)

A Few Important Concepts

- muoductio
- Gluing
- Notations

- 1 Topological vs. geometric properties
- 2 Intrinsic vs. extrinsic properties
- 3 Local vs. global properties

We take surfaces (2-manifolds) as examples, you try to imagine them in higher dimensional manifolds.

同下 くほと くほと

- - E + - E +

高 と く ヨ と く ヨ と

高 と く ヨ と く ヨ と

Basic Surface Topology - I Topological Properties: imagine a thin stretchable rubber : can be deformed but can't be teared as the surface deforms, some aspects change, some do not Notations **\blacksquare** aspects unaffected by deformation \Rightarrow topology Geometric Properties: Properties that do change in deformation e.g. curvature, areas, distances, angles.

Basic Surface Topology - I Topological Properties: imagine a thin stretchable rubber : can be deformed but can't be teared as the surface deforms, some aspects change, some do not Notations **\blacksquare** aspects unaffected by deformation \Rightarrow topology Geometric Properties: Properties that do change in deformation e.g. curvature, areas, distances, angles.

Basic Surface Topology - I Topological Properties: imagine a thin stretchable rubber : can be deformed but can't be teared as the surface deforms, some aspects change, some do not Notations **\blacksquare** aspects unaffected by deformation \Rightarrow topology Geometric Properties: Properties that do change in deformation e.g. curvature, areas, distances, angles.

Basic Surface Topology - I Topological Properties: imagine a thin stretchable rubber : can be deformed but can't be teared as the surface deforms, some aspects change, some do not Notations **\blacksquare** aspects unaffected by deformation \Rightarrow topology Geometric Properties: Properties that do change in deformation e.g. curvature, areas, distances, angles.

An exercise: a torus vs. the glued screen

・ 同 ト ・ ヨ ト ・ ヨ ト

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

Intrinsic Properties:

w.r.t. shape itself

Extrinsic Properties:

w.r.t. the way a shape embeds

Basic Surface Topology - I

Notations

Intrinsic Properties:

- w.r.t. shape itself
- the residents can not tell it

Extrinsic Properties:

w.r.t. the way a shape embeds

Basic Surface Topology - I

Xin Shane Li

Outline

- Introduction
- Gluing
- Notations

Intrinsic Properties:

- w.r.t. shape itself
- the residents can not tell it
- we perceive our universe intrinsically! Try to think intrinsically for surfaces.

Extrinsic Properties:

w.r.t. the way a shape embeds

- ∢ ⊒ ⇒

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

Intrinsic Properties:

- w.r.t. shape itself
- the residents can not tell it
- we perceive our universe intrinsically! Try to think intrinsically for surfaces.

Extrinsic Properties:

- w.r.t. the way a shape embeds
- Examples: Whether 2D people on the flat planet (using intrinsic properties) can detect the following?

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

Intrinsic Properties:

- w.r.t. shape itself
- the residents can not tell it
- we perceive our universe intrinsically! Try to think intrinsically for surfaces.

Extrinsic Properties:

- w.r.t. the way a shape embeds
- Examples: Whether 2D people on the flat planet (using intrinsic properties) can detect the following?
 - 1 Cut the planet open;

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

Intrinsic Properties:

- w.r.t. shape itself
- the residents can not tell it
- we perceive our universe intrinsically! Try to think intrinsically for surfaces.

Extrinsic Properties:

- w.r.t. the way a shape embeds
- Examples: Whether 2D people on the flat planet (using intrinsic properties) can detect the following?
 - 1 Cut the planet open;
 - If the planet is a torus, does it have a knot or not? (whether it can deform within 3D space to a standard torus or not)

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

Intrinsic Properties:

- w.r.t. shape itself
- the residents can not tell it
- we perceive our universe intrinsically! Try to think intrinsically for surfaces.

Extrinsic Properties:

- w.r.t. the way a shape embeds
- Examples: Whether 2D people on the flat planet (using intrinsic properties) can detect the following?
 - 1 Cut the planet open;
 - If the planet is a torus, does it have a knot or not? (whether it can deform within 3D space to a standard torus or not)

高 と く ヨ と く ヨ と

3 Roll the flat planet to a cylinder;

Basic Surface Topology - I

- Xin Shane Li
- Outline
- Introduction
- Gluing
- Notations

Intrinsic Properties:

- w.r.t. shape itself
- the residents can not tell it
- we perceive our universe intrinsically! Try to think intrinsically for surfaces.

Extrinsic Properties:

- w.r.t. the way a shape embeds
- Examples: Whether 2D people on the flat planet (using intrinsic properties) can detect the following?
 - 1 Cut the planet open;
 - If the planet is a torus, does it have a knot or not? (whether it can deform within 3D space to a standard torus or not)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

2

- **3** Roll the flat planet to a cylinder;
- 4 Whether the planet is a plane or a hemisphere.

Local Properties vs. Global Properties

Basic Surface Topology - I

Xin Shane Li

Outline

Introduction

Gluing

Notations

Local Properties:

observable within a small region of the manifold

Global Properties:

require consideration of the manifold as a whole

Examples: Which of following discoveries in the 2D planet are local/global?

1 A triangle has three angles $\pi/4, \pi/4, \pi/4$;

回 と く ヨ と く ヨ と

Local Properties vs. Global Properties

Basic Surface Topology - I

Xin Shane Li

Outline

Introduction

Gluing

Notations

Local Properties:

observable within a small region of the manifold

Global Properties:

- require consideration of the manifold as a whole
- Examples: Which of following discoveries in the 2D planet are local/global?
 - **1** A triangle has three angles $\pi/4, \pi/4, \pi/4$;
 - 2 As their civilization spread, they find the area of the planet to be finite.

▲□ ▶ ▲ □ ▶ ▲ □ ▶