Lecture 4
 Basic Geometry of Curves and Surfaces

Basic Geometry of Curves and Surfaces

\square Start with geometric properties of smooth curves and surfaces
\square Then discuss their computation on polygonal meshes

For more properties or proofs of these geometric concepts, refer to standard differential geometry textbooks: e.g. [do Carmo 76: Differential Geometry of Curves and Surfaces, Prentice Hall, 1976]

Curves

\square Consider smooth planar curves: differentiable 1-manifolds embedded in R^{2}
\square Parametric form:

$$
\begin{aligned}
\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{2} \text { with } & \mathbf{x}(u)=(x(u), y(u))^{T} \\
& u \in[a, b] \subset \mathbb{R}
\end{aligned}
$$

-Coordinates x and y are differentiable functions of u

- Tangent vector $x^{\prime}(u)$ to the curve at a point $x(u)$ is defined as the first derivative of the coordinate function: $\mathbf{x}^{\prime}(u)=\left(x^{\prime}(u), y^{\prime}(u)\right)^{T}$
$>$ The trajectory of a point is a curve parameterized by time ($u=\mathrm{t}$) the tangent vector $\mathrm{x}^{\prime}(\mathrm{t}) \rightarrow$ the velocity vector at time t
\square Assume parameterization to be regular, s.t. $\mathbf{x}^{\prime}(u) \neq \mathbf{0}$ for all $u \in[a, b]$
\square A normal vector $n(u)$ at $x(u)$ can be computed as

$$
\mathbf{n}(u)=\mathbf{x}^{\prime}(u)^{\perp} /\left\|\mathbf{x}^{\prime}(u)^{\perp}\right\|
$$

where ${ }^{\perp}$ denotes rotation by 90 degree ccw.

Parameterization of a Curve

\Rightarrow A curve is the image of a function x
\square Same curve can be obtained with different parameterizations:
\rightarrow same trajectory using different speeds
\square With different parameterizations x_{1} and x_{2}, we usually have $\mathbf{x}_{1}(u) \neq \mathbf{x}_{2}(u)$ on a given u

- Different representations for a same shape
- Can reparameterize a curve using a different mapping function with $\mathrm{g}: \mathrm{u} \rightarrow \mathrm{t}, \quad \mathrm{x}_{1}(\mathrm{u}) \rightarrow \mathrm{x}_{2}(\mathrm{t})$
\square We want to extract properties of a curve that are independent of its specific parameterization, e.g. length, curvature...

Arc Length Parameterization

- Curve length: $\quad l(c, d)=\int_{c}^{d}\left\|\mathbf{x}^{\prime}(u)\right\| \mathrm{d} u$
\square A unique parameterization that can be defined as a lengthpreserving mapping, i.e., isometry, between the parameter interval and the curve using the parameterization

$$
s=s(u)=\int_{a}^{u}\left\|\mathbf{x}^{\prime}(t)\right\| \mathrm{d} t .
$$

\square Arc length parameterization $x(s)$:
\square the length of the curve from $x(0)$ to $x(s)$ is equal to s
\square independent of specific representation of the curve, maps the parameter interval [a,b] to [0,L]
\square Any regular curve can be parameterized using arc length (isometry)
\rightarrow ideal parameterization, many computations simplified
\rightarrow doesn't work for surfaces (later)

Surfaces

- Consider a smooth surface patch: differentiable 2-manifold embedded in R^{3}
\square Parametric form:

$$
\mathbf{x}(u, v)=\left(\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right), \quad(u, v) \in \Omega \subset \mathbb{R}^{2},
$$

where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are differentiable functions in u and v ,
\square Scalars (u,v) are called coordinates in parameter space

- Like tangent vectors of curves determine the metric of the curve,
\square The first derivatives of \mathbf{X} determines the metric of the surface

Tangent Plane

\square Two partial derivatives:

$$
\mathbf{x}_{u}\left(u_{0}, v_{0}\right):=\frac{\partial \mathbf{x}}{\partial u}\left(u_{0}, v_{0}\right) \quad \text { and } \quad \mathbf{x}_{v}\left(u_{0}, v_{0}\right):=\frac{\partial \mathbf{x}}{\partial v}\left(u_{0}, v_{0}\right)
$$

are the 2 tangent vectors of the two iso-parameter curves:

$$
\mathbf{C}_{\mathbf{u}}(t)=\mathbf{x}\left(u_{0}+t, v_{0}\right) \quad \text { and } \quad \mathbf{C}_{\mathbf{v}}(t)=\mathbf{x}\left(u_{0}, v_{0}+t\right)
$$

\square Assuming a regular parameterization, i.e., $\mathbf{x}_{u} \times \mathbf{x}_{v} \neq \mathbf{0}$
\square The tangent plane at this point is spanned by \mathbf{x}_{u} and \mathbf{x}_{v}
\square The surface normal vector is orthogonal to both tangent vectors and can be computed as

$$
\mathbf{n}=\frac{\mathbf{x}_{u} \times \mathbf{x}_{v}}{\left\|\mathbf{x}_{u} \times \mathbf{x}_{v}\right\|}
$$

Directional Derivatives

\square Consider the straight line passing $\left(u_{0}, v_{0}\right)$

$$
(u, v)=\left(u_{0}, v_{0}\right)+t \overline{\mathbf{w}}
$$

and a direction vector $\overline{\mathbf{w}}=\left(u_{w}, v_{w}\right)^{T}$ defined in parameter space
\square Its corresponding curve on the surface is

$$
\mathbf{C}_{\mathbf{w}}(t)=\mathbf{x}\left(u_{0}+t u_{w}, v_{0}+t v_{w}\right) .
$$

\square The directional derivative \mathbf{w} of \mathbf{x} at $\left(u_{0}, v_{0}\right)$ relative to the direction $\overline{\mathbf{w}}$ is defined to be the tangent to

$$
\mathbf{C}_{\mathbf{w}} \text { at } t=0 \text {, given by } \mathbf{w}=\partial \mathbf{C}_{\mathbf{w}}(t) / \partial t
$$

$>$ Mapping the velocity vector to another: $\mathbf{w}=\mathbf{J} \overline{\mathbf{w}}$
Where J: Jacobian Matrix of $\mathbf{x}: \quad \mathbf{J}=\left[\begin{array}{cc}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v}\end{array}\right]=\left[\mathbf{x}_{u}, \mathbf{x}_{v}\right]$

First Fundamental Form

$\square J \rightarrow$ linear map that transforms a vector $\overline{\mathrm{w}}$ in parametric space into a tangent vector w on the surface.
$\square J$ encodes the metric of the surface, namely, it allows measuring how angles, distances, and areas are transformed by the mapping.
\square Let $\overline{\mathbf{w}}_{1}, \overline{\mathbf{w}}_{2}$ be two unit direction vectors in the parameter space
\square The cosine of the angle on the surface between them is:

$$
\mathbf{w}_{1}^{T} \mathbf{w}_{2}=\left(\mathbf{J} \overline{\mathbf{w}}_{1}\right)^{T}\left(\mathbf{J} \overline{\mathbf{w}}_{2}\right)=\overline{\mathbf{w}}_{1}^{T}\left(\mathbf{J}^{T} \mathbf{J}\right) \overline{\mathbf{w}}_{2}
$$

\square The matrix product is known as the first fundamental form:

$$
\mathbf{I}=\mathbf{J}^{T} \mathbf{J}=\left[\begin{array}{ll}
E & F \\
F & G
\end{array}\right]:=\left[\begin{array}{ll}
\mathbf{x}_{u}^{T} \mathbf{x}_{u} & \mathbf{x}_{u}^{T} \mathbf{x}_{v} \\
\mathbf{x}_{u}^{T} \mathbf{x}_{v} & \mathbf{x}_{v}^{T} \mathbf{x}_{v}
\end{array}\right]
$$

First Fundamental Form (cont.)

\square The first fundamental form I
aDetermines the squared length of a tangent vector

$$
\|\mathbf{w}\|^{2}=\overline{\mathbf{w}}^{T} \mathbf{I} \overline{\mathbf{w}}
$$

-Used to measure the length of a curve $\mathbf{x}(t)=\mathbf{x}(\mathbf{u}(t))$
(image of a planar regular curve: $\mathbf{u}(t)=(u(t), v(t))$)

1) The tangent vector of the curve:

$$
\frac{\mathrm{d} \mathbf{x}(\mathbf{u}(t))}{\mathrm{d} t}=\frac{\partial \mathbf{x}}{\partial u} \frac{\mathrm{~d} u}{\mathrm{~d} t}+\frac{\partial \mathbf{x}}{\partial v} \frac{\mathrm{~d} v}{\mathrm{~d} t}=\mathbf{x}_{u} u_{t}+\mathbf{x}_{v} v_{t}
$$

2) So the length: $l(a, b)$ of $\mathbf{x}(\mathbf{u}(t))$ is

$$
\begin{aligned}
l(a, b) & =\int_{a}^{b} \sqrt{\left(u_{t}, v_{t}\right) \mathbf{I}\left(u_{t}, v_{t}\right)^{T}} \mathrm{~d} t \\
& =\int_{a}^{b} \sqrt{E u_{t}^{2}+2 F u_{t} v_{t}+G v_{t}^{2}} \mathrm{~d} t .
\end{aligned}
$$

First Fundamental Form (cont.)

\square Used to measure the surface area:

$$
A=\iint_{U} \sqrt{\operatorname{det}(\mathbf{I})} \mathrm{d} u \mathrm{~d} v=\iint_{U} \sqrt{E G-F^{2}} \mathrm{~d} u \mathrm{~d} v
$$

\square Since it allows measuring angles, distances, and areas, the first fundamental form I can be considered as a geometric tool.
\square Sometimes denoted by the letter \mathbf{G} and called the metric tensor.

Anisotropy

\square Under the Jacobian matrix, a vector $\overline{\mathbf{w}}$ is transformed into a tangent vector w

- A unit circle \rightarrow an ellipse (called anisotropy ellipse)
\square The axes of the ellipse: $\mathbf{e}_{1}=\mathbf{J} \mathbf{e}_{1}$ and $\mathbf{e}_{2}=\mathbf{J} \overline{\mathbf{e}}_{2}$;
\square The lengths of the axes: $\sigma_{1}=\sqrt{\lambda_{1}}$ and $\sigma_{2}=\sqrt{\lambda_{2}}$.
singular values of the Jacobian matrix J

Surface Curvature: Normal Curvature

\square How curved a surface is on a point \rightarrow look at the curvature of curves embedded in the surface
\square At a surface point $\mathbf{p} \in \mathcal{S} \quad$ (parameter: $\overline{\mathbf{t}}=\left(u_{t}, v_{t}\right)^{T}$)
$\left.\begin{array}{l}\square \text { Pick a tangent vector } \mathrm{t}=u_{t} \mathbf{x}_{u}+v_{t} \mathbf{x}_{v} \\ \square \text { Get the surface normal vector } \mathrm{n}\end{array}\right]$ Determines a plane
Normal curvature $\kappa_{n}(\overline{\mathbf{t}})$ at $\mathbf{p}=$ curvature of planar curve created by intersection of the surface and the plane

$$
\kappa_{n}(\overline{\mathbf{t}})=\frac{\overline{\mathbf{t}}^{T} \mathbf{I I} \overline{\mathbf{t}}}{\overline{\mathbf{t}}^{T} \mathbf{I} \overline{\mathbf{t}}}=\frac{e u_{t}^{2}+2 f u_{t} v_{t}+g v_{t}^{2}}{E u_{t}^{2}+2 F u_{t} v_{t}+G v_{t}^{2}},
$$

where II denotes the $2^{\text {nd }}$ fundamental form:

$$
\mathbf{I I}=\left[\begin{array}{ll}
e & f \\
f & g
\end{array}\right]:=\left[\begin{array}{ll}
\mathbf{x}_{u u}^{T} \mathbf{n} & \mathbf{x}_{u v}^{T} \mathbf{n} \\
\mathbf{x}_{u v}^{T} \mathbf{n} & \mathbf{x}_{v v}^{T} \mathbf{n}
\end{array}\right]
$$

Surface Curvature: Principal Curvatures

\square The curvature properties of the surface
> Looking at all normal curvatures from rotating the tangent vector around the normal at p
\square The rational quadratic function of $\kappa_{n}(\overline{\mathbf{t}})=\frac{\overline{\mathbf{t}}^{T} \mathbf{I} \overline{\mathbf{t}}}{\overline{\mathbf{t}}^{T} \mathbf{I} \overline{\mathbf{t}}}=\frac{e u_{t}^{2}+2 f u_{t} v_{t}+g v_{t}^{2}}{E u_{t}^{2}+2 F u_{t} v_{t}+G v_{t}^{2}}$, has 2 distinct extremal values \rightarrow principal curvatures (maximum curvature κ_{1} and minimum curvature κ_{2})
$\kappa_{1} \neq \kappa_{2}$
max/min curvature \rightarrow
2 corresponding principal directions

Euler Theorem and Curvature Tensor

- Relates principal curvatures to the normal curvature

$$
\kappa_{n}(\overline{\mathbf{t}})=\kappa_{1} \cos ^{2} \psi+\kappa_{2} \sin ^{2} \psi
$$

- Surface curvature encoded by two principal curvatures
- Any normal curvature is a convex combination of them
- Curvature Tensor C
- A symmetric $3 \star 3$ matrix with eigenvalues $\kappa_{1}, \kappa_{2}, 0$ and corresponding eigenvectors $\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{n}$
- Computed by
$\square \mathbf{C}=\mathbf{P D P}^{-1}$, where $\mathbf{P}=\left[\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{n}\right]$ and $\mathbf{D}=\operatorname{diag}\left(\kappa_{1}, \kappa_{2}, 0\right)$

Mean and Gaussian Curvature

- Two other extensively used curvatures:
- Mean curvature H : the average of the principal curvatures GGaussian curvature K: the product of the principal curvatures

$$
H=\frac{\kappa_{1}+\kappa_{2}}{2} \quad K=\kappa_{1} \kappa_{2}
$$

Widely use as local descriptor to analyze properties of surfaces

Another example: used for visual inspection in computer-aided geometric design. Left: mean curvature; right: Gaussian curvature.

Intrinsic Geometry

\square Intrinsic Geometry: Properties of the surface that can be perceived by 2D creatures that live on it (without knowing the $3^{\text {rd }}$ dimension)
$>$ in differential geometry: properties that only depend on the first fundamental form (e.g. length and angles of curves on the surface, Gaussian curvature)
> Invariant under isometries
\square Extrinsic Geometry:
a depends not only on the metrics but also the embedding of the surface
\square Could change under isometries
-e.g. Mean curvature

