Lecture 4
Basic Geometry of Curves and

Surfaces
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Basic Geometry of Curves and Surfaces

ad Start with geometric properties of smooth curves and
surfaces

A Then discuss their computation on polygonal meshes

For more properties or proofs of these geometric concepts,
refer to standard differential geometry textbooks :

e.g. [do Carmo 76: Differential Geometry of Curves and
Surfaces, Prentice Hall, 1976]




Curves

A Consider smooth planar curves: differentiable 1-manifolds
embedded in R?
QParametric form: x: [a,b] = R? with x(u) = (z(u),y(u))?
u € la,b] C R
0 Coordinates x and y are differentiable functions of u

0 Tangent vector x’(u) to the curve at a point x(u) is defined as the
first derivative of the coordinate function: x'(u) = (z'(u),y'(u))?

> The trajectory of a point is a curve parameterized by time (u=t)
the tangent vector x’(t) > the velocity vector at time t

0O Assume parameterization to be regular, s.t.x'(u) # 0 for allu € [a, b]
0 A normal vector n(u) at x(u) can be computed as
n(u) = x"(u)*"/[[x"(u)*|

where + denotes rotation by 90 degree ccw.
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Parameterization of a Curve

> A curve is the image of a function x
0 Same curve can be obtained with different parameterizations:
- same trajectory using different speeds

QO With different parameterizations x; and x,, we usually have
x1(u) # x2(u) on agiven u
O Different representations for a same shape

a Can reparameterize a curve using a different mapping function
with g: u=2t, x,(0)=2>x,(t)

0 We want to extract properties of a curve that are independent of
its specific parameterization, e.qg. length, curvature...




Arc Length Parameterization

Q Curve length: (¢, d) = fj ||x’ (u)||du

O A unique parameterization that can be defined as a length-
preserving mapping, i.e., isometry, between the parameter interval
and the curve using the parameterization

s = s(u) = / |x"(¢)]|dt.

a Arc length parameterization x(s) :
a the length of the curve from x(0) to x(s) is equal to s
d independent of specific representation of the curve, maps the
parameter interval [a,b] to [O,L]
Q Any regular curve can be parameterized using arc length (isometry)
- ideal parameterization, many computations simplified
- doesnt work for surfaces (later)
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Surfaces

a Consider a smooth surface patch: differentiable 2-manifold
embedded in R3 2(u, v)
dParametric form:  x(u,v) = [y(u,v) |, (u,v)€eQC R?,

z(u,v)
where x,y,z are differentiable functions in u and v,
Q Scalars (u,v) are called coordinates in parameter space

O Like tangent vectors of curves determine the metric of the curve,
O The first derivatives of X determines the metric of the surface
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Tangent Plane

A Two partial derivatives:

ox ox

m(?i—{_’]j'?f[_}) and  x,(up,vp) := a(uu,’uﬂ)

are the 2 tangent vectors of the two iso-parameter curves:
Cu(t) =x(up +t,v9) and Cy(t) = x(up,ve + 1)

X (Ug, Vo) 1=

O Assuming a regular parameterization, ie., x, x x, # 0
O The tangent plane at this point is spanned by x,, and x,

O The surface normal vector is orthogonal o both tangent vectors and can

be computed as Xy X Xy
n —
qu X XT;H




e

Directional Derivatives

O Consider the straight line passing (ug, vp)
(u,v) = (up,vo) + tw
and a direction vector w = (uy, v,,)" defined in parameter space
QO Its corresponding curve on the surface is
Cw(t) = x(up + tuy,vo + tuy,).

0 The directional derivative w of x at (uo,v0) relative to the
direction w is defined to be the tangent to
Cw at t = 0, given by w = 9C(t)/0t

> Mapping the velocity vector to another: w =Jw

e e
ou  Ov

Where J: Jacobian Matrix of x:  J = |9 Z¢| = [x,, X,
9z 9z
L Ou  Ov
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First Fundamental Form

a2 J - linear map that transforms a vector w in parametric
space into a tangent vector w on the surface.

a J encodes the metric of the surface, namely, it allows
measuring how angles, distances, and areas are transformed
by the mapping.

O Let w;, W be two unit direction vectors in the parameter
space

A The cosine of the angle on the surface between them is:

W?Wg — (Jﬁfl)T (Jﬁ’g) — V_Vr{ (JTJ) ﬁf'g

0 The matrix product is known as the first fundamental form:

E F ngu XEX?}
F G] | LT T

Xfu XT,-' X'U X?,-'

I_JTJ_{
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First Fundamental Form (cont.)

0 The first fundamental form |

ODetermines the squared length of a tangent vector
w2 = %7 Tw

QUsed to measure the length of a curve x(t) = x(u(t))

(image of a planar regular curve: u(t) = (u(t),v(t)) )

1) The tangent vector of the curve:
dx(u(t))  Oxdu N Ox dv

dt ou dt Ov dt
2) So the length: i(a,b) of x(u(t)) is

b
[(a,b) /\/utv (ug, ve) L dt

- / VB + 2Fu,v, + Guidt.

= XUt + XoUt




First Fundamental Form (cont.)

0 Used to measure the surface area:

A = fo Vdet(Ddudv = /fU VvV EG — F2dudv.

a Since it allows measuring angles, distances, and areas, the
first fundamental form | can be considered as a geometric
tool.

0 Sometimes denoted by the letter G and called the metric
tensor.




Anisotropy

3 Under the Jacobian matrix, a vector w is transformed into a
tangent vector w

a A unit circle - an ellipse (called anisotropy ellipse)
0 The axes of the ellipse: e; = J&, and ey = J&y;

0O The lengths of the axes: o, = /A1 and 03 = v/ As.
singular values of the Jacobian matrix J

o =\ 1/2(E +G) + /(E - G2 + 4F7,

oy = \/1/2(13 +G) = (E - G)? + 4F2,
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Surface Curvature: Normal Curvature

3 How curved a surface is on a point > look at the curvature of
curves embedded in the surface

d At a surface point p € S (parameter: t = (u;,v,)7 )
QaPick a tangent vector t = wuix,, + v4X, }

Q0 Get the surface normal vector n Defermines a plane

Normal curvature H’-n(E) at p = curvatur planar curve created by
intersection of the surface and the plane

normal vector

where IT denotes the 2nd
fundamental form:

T T
I — [8 f] L Xuut Xy
f g xIn xIn

surface

uv

tangent vector

=

®) t'me eu? + 2fugv; + gu?

i H--n_ — — .
normal section ETIE Euf 19 F’u-tvt n G’U? ;
. 4

/
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Surface Curvature: Principal Curvatures

0 The curvature properties of the surface

» Looking at all normal curvatures from rotating the tangent vector

around the normal at p o ) )
t Lt  euy +2fuv + go;

O The rational quadratic function of fin(t) = tf1t Eu? +2Fwv; + G’
has 2 distinct extremal values - principal curvatures
(maximum curvature K1 and minimum curvature k2 )

Ag! 7& A2 12 R1 = R2
max/min curvature Isotropic
> curvature

2 corresponding
principal directions

7 /L

|
AN
D

L — Umbilical points Y
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Euler Theorem and Curvature Tensor

0 Relates principal curvatures to the normal curvature
kn(t) = K1cos® 1) + kosin® 1,

0 Surface curvature encoded by two principal curvatures
O Any normal curvature is a convex combination of them

2 Curvature Tensor C
0 A symmetric 3*3 matrix with eigenvalues K1, K2, 0
and corresponding eigenvectorst1, t2, n
0 Computed by

C=PDP-!, where P = [t|,t,n] and D = diag(x1, k2, 0)
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Mean and Gaussian Curvature

0 Two other extensively used curvatures:

0 Mean curvature H: the average of the principal curvatures
0 Gaussian curvature K: the product of the principal curvatures

— K:Hlfﬁg

Widely use as local descriptor to analyze properties of surfaces

<0

Another example: used for visual inspection in computer—aided geometric design.

Left: mean curvature; right: Gaussian curvature.
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Intrinsic Geometry

A Intrinsic Geometry: Properties of the surface that can be
perceived by 2D creatures that live on it (without knowing
the 3rd dimension)

> in differential geometry: properties that only depend on the
first fundamental form (e.g. length and angles of curves on the
surface, Gaussian curvature)

> Invariant under isometries

0 Extrinsic Geometry:

0 depends not only on the metrics but also the embedding of the
surface

A Could change under isometries
Oe.g. Mean curvature




