
Lecture 4 
Basic Geometry of Curves and 

Surfaces 



Basic Geometry of Curves and Surfaces 

 Start with geometric properties of smooth curves and 
surfaces 

 Then discuss their computation on polygonal meshes 

 

For more properties or proofs of these geometric concepts, 
refer to standard differential geometry textbooks : 

e.g. [do Carmo 76: Differential Geometry of Curves and 
Surfaces, Prentice Hall, 1976] 

 



Curves 

 Consider smooth planar curves: differentiable 1-manifolds 
embedded in R2 

Parametric form:                          with 

Coordinates x and y are differentiable functions of u 

Tangent vector x’(u) to the curve at a point x(u) is defined as the 
first derivative of the coordinate function: 

 The trajectory of a point is a curve parameterized by time (u=t) 
the tangent vector x’(t)  the velocity vector at time t 

Assume parameterization to be regular, s.t.               for all 

A normal vector n(u) at x(u) can be computed as 

 

 where     denotes rotation by 90 degree ccw. 



Parameterization of a Curve 

 A curve is the image of a function x 

 Same curve can be obtained with different parameterizations:  
  same trajectory using different speeds 

 With different parameterizations x1 and x2, we usually have  

                               on a given u 

 Different representations for a same shape 
 Can reparameterize a curve using a different mapping function 
     with g: ut ,    x1(u)x2(t) 

 We want to extract properties of a curve that are independent of 
its specific parameterization, e.g. length, curvature… 

 

 



Arc Length Parameterization 

 Curve length:     

 A unique parameterization that can be defined as a length-
preserving mapping, i.e., isometry, between the parameter interval 
and the curve using the parameterization 

 Arc length parameterization x(s)  : 
 the length of the curve from x(0) to x(s) is equal to s 

 independent of specific representation of the curve, maps the 
parameter interval [a,b] to [0,L] 

 Any regular curve can be parameterized using arc length (isometry) 

  ideal parameterization, many computations simplified  

  doesn’t work for surfaces (later) 



Surfaces 

 Consider a smooth surface patch: differentiable 2-manifold 
embedded in R3 

Parametric form: 

 

   where x,y,z are differentiable functions in u and v,  

Scalars (u,v) are called coordinates in parameter space 

 Like tangent vectors of curves determine the metric of the curve,  

 The first derivatives of X determines the metric of the surface 



Tangent Plane 

 Two partial derivatives: 
 

 
   are the 2 tangent vectors of the two iso-parameter curves: 

 Assuming a regular parameterization, i.e.,  

 The tangent plane at this point is spanned by 

 The surface normal vector is orthogonal to both tangent vectors and can 
be computed as  



Directional Derivatives  

 Consider the straight line passing           

 

    and a direction vector                      defined in parameter space 

 Its corresponding curve on the surface is 

 The directional derivative                         relative to the 
direction     is defined to be the tangent to 

 

 Mapping the velocity vector to another: 

 

Where J: Jacobian Matrix of x : 



First Fundamental Form 

 J  linear map that transforms a vector    in parametric 
space into a tangent vector     on the surface. 

 J encodes the metric of the surface, namely, it allows 
measuring how angles, distances, and areas are transformed 
by the mapping. 

 Let     ,      be two unit direction vectors in the parameter 
space 

 The cosine of the angle on the surface between them is: 

 
 

 The matrix product is known as the first fundamental form: 



First Fundamental Form (cont.) 

 The first fundamental form I 

Determines the squared length of a tangent vector  

 

Used to measure the length of a curve  

(image of a planar regular curve:                            ) 

1) The tangent vector of the curve: 

 

 

2) So the length:                           is 

 



First Fundamental Form (cont.) 

 Used to measure the surface area: 

 

 

 

 

 Since it allows measuring angles, distances, and areas, the 
first fundamental form I can be considered as a geometric 
tool.  

 Sometimes denoted by the letter G and called the metric 
tensor. 

 

 



Anisotropy 

 Under the Jacobian matrix, a vector     is transformed into a 
tangent vector  

 A unit circle  an ellipse (called anisotropy ellipse) 

The axes of the ellipse: 

The lengths of the axes: 

 singular values of the Jacobian matrix J 

 



Surface Curvature: Normal Curvature 

How curved a surface is on a point  look at the curvature of 
curves embedded in the surface 

 At a surface point             (parameter:                     ) 
Pick a tangent vector 

Get the surface normal vector n Determines a plane 

Normal curvature  = curvature of planar curve created by 
intersection of the surface and the plane 

where II denotes the 2nd 
fundamental form: 



Surface Curvature: Principal Curvatures 

 The curvature properties of the surface  
 Looking at all normal curvatures from rotating the tangent vector 

around the normal at p 

 The rational quadratic function of 

      has 2 distinct extremal values  principal curvatures 

       (maximum curvature      and minimum curvature     ) 

Umbilical points 

max/min curvature        
 
2 corresponding 
principal directions 

Isotropic 
curvature  



Euler Theorem and Curvature Tensor 

 Relates principal curvatures to the normal curvature 

 Surface curvature encoded by two principal curvatures 

 Any normal curvature is a convex combination of them 

 Curvature Tensor C 

 A symmetric 3*3 matrix with eigenvalues 

       and corresponding eigenvectors   

 Computed by 

C=PDP-1,  where                         and 



Mean and Gaussian Curvature 

 Two other extensively used curvatures: 
Mean curvature H: the average of the principal curvatures 

Gaussian curvature K: the product of the principal curvatures 

Widely use as local descriptor to analyze properties of surfaces 

Another example: used for visual inspection in computer-aided geometric design. 

Left: mean curvature;  right: Gaussian curvature. 



Intrinsic Geometry 

 Intrinsic Geometry: Properties of the surface that can be 
perceived by 2D creatures that live on it (without knowing 
the 3rd dimension) 
 in differential geometry: properties that only depend on the 

first fundamental form (e.g. length and angles of curves on the 
surface, Gaussian curvature) 

 Invariant under isometries 

 

 Extrinsic Geometry:  
depends not only on the metrics but also the embedding of the 

surface 

Could change under isometries 

e.g. Mean curvature 


