
Lecture 2
Triangle Mesh and its Data Structure

Overview

 The data structure to represent surfaces
efficiency and memory consumption of the
geometric modeling algorithms

 We will
 Give a brief overview of the various data structures

for mesh representations in the literature

 Elaborate the half-edge data structure, which is
commonly used in modeling/processing 3D data

Surfaces defined by triangle meshes

 A surface (2-manifold, two-dimensional manifold): a
continuous topological space with infinitely many points,
where each point has a local neighborhood homeomorphic to a
2-dimensional Euclidean space E2

 A triangle mesh is its approximation:
 We use a finite number of vertices and triangles

 Simply a collection of these triangles without any mathematical
structure

 But it defines a piecewise linear representation with quadratic
approximation

Piecewise Linear Representation by
Barycentric Parameterization

 Every triangle T is determined by its three vertices v1,v2,v3,
we denote it as T=[v1,v2,v3]

 Any point p in the interior of T can be represented uniquely
using a barycentric combination of the corner points:

 p= av1+bv2+cv3 ,

 with a+b+c=1, a,b,c >= 0 .

Therefore, based on this per-triangle mapping, a 2D
parameterization can be defined f: R2

R3, to represent the
entire continuous surface approximated by this triangle mesh
(details and algorithms will be discussed later, on how to
actually construct this 2D layout parameterization)

Smooth Surfaces can be Well Approximated

 A sufficiently smooth surface is approximated by a triangle mesh
(piecewise linear function)
 approximation error O(h2), with h = maximum edge length
 Error Reduced by a factor of ¼ : if we evenly split all edges
 A simple subdivision scheme for this: cutting each triangle into 4

 Face number: F 4F

 Approximation error : inversely proportional to F

 The actual approximation error depends on the 2nd order Taylor
expansion, i.e., on the curvature of the underlying smooth surface

 But roughly: a sufficient approximation can be obtained using
moderate mesh complexity (you may want to adaptively adjust vertex
density according to surface curvature, will be discussed later in
meshing sessions)

Geometric and Topological Components
of a Triangle Mesh

 A triangle mesh has two components:
 Geometric components: vertex table positions of points

 Topological components: face table the graph encoding the
connectivity

 What if you fix the topology (face table), and change the
positions of vertices?

 a continuously deforming surface

 What if you only have the positions of sampled points, but
don’t know the connectivity?

 could be complicated… different connectivity indicates
different shapes

Face-based Data Structure

 A simplest way to represent a surface mesh
 Storing a set of faces represented by their vertex

positions

 also called “triangle soup”
 used in the stereolithography (STL)

format
 if using x (e.g. 32) bits to represent a

vertex coordinate
 Each triangle needs 3*3*x/8 = 36 bytes

 No connectivity info stored
 Inefficient for many geometric

computing: e.g. traversing local
adjacency information

 Vertex positions replicated as many
times as the degree of the vertices

Face-based Data Structure (2)

 An improved face-based data structure:
 To prevent the redundancy by indexed face set

 Stores an array of vertices

 Stores faces as sets of indices into this array

 Simple and efficient in storage

 Widely used in many formats such as OFF,
OBJ, VRML, as well as our .M files

 if using x (e.g. 32) bits to represent a vertex
coordinate and face indices
 Each vertex requires 3*x/8 = 12 bytes
 Each triangle needs 3*x/8 = 12 bytes
 (Roughly F=2V, by Euler formula)
 So on average: 18 bytes / triangle
 Only a half storage space

 No connectivity info stored
 Inefficient for many geometric computing:

e.g. traversing local adjacency information

What Does Geometric Computing Need?
 Access to individual elements (vertices edges, and faces): enumeration of all elements

 Local traversal, e.g.:
 What are the edges in a given face;
 What are the vertices in a given face or edge;
 What are incident faces of a given edge;
 What are incident faces or edges of a given vertex; ...

 Can you develop efficient algorithms to do these using the previous face-based data
structure?

 An improved face-based data structure for
efficient local traversal:

 For each face: store references to its 3 vertices +
references to its neighboring triangles

 For each vertex: store a reference to its
neighboring triangle + 3 coordinates

 Used in CGAL for representing 2D Triangulation,
32 bytes / triangle (google CGAL)

 Enumerating the one-ring of a vertex is not easy

 Not easily extendable to general/mixed polygonal
meshes

Edge-based Data Structure
 A more generally used data structure, since the connectivity

is a graph, directly relates to the mesh edges

 Many well known methods: winged-edge [Baumgart 72], quad-
edge [Guibas and Stolfi 85], and variants [O’Rourke 94]

 An example: Winged-edge structure
 Each edge stores references to its

endpoint vertices + two incident faces +
next and previous edge within the left
and right faces

 Each vertex stores a reference to one
of its incident edges

 Each face stores a reference to one of
its incident edges

 60 bytes / triangle

 Still not easy to traversing the one-
ring (e.g. to traverse the one-ring of a
vertex v, how do you know if it is the
first or second vertex of an edge?)

Half-Edge Data Structure
 (What?) A common way to represent triangular mesh for geometric

processing
 We first focus on triangle-mesh, (it works for general polygonal

mesh).

 3D analogy: half-face data structure for tetrahedral mesh

 (Why?) Effective for maintaining incidence information of vertices
 Efficient local traversal

 Relatively low spatial cost

 Supporting dynamic local updates/manipulations (edge collapse,
vertex split, etc.)

 (Resources?) Codes are provided on the course website. After the
class, please go through them carefully, we will work on it during
the whole semester.

Half-Edge Data Structure (cont.)
2 vertices share an edge, 2 faces share an edge
Each face has 3 vertices,
 To store all adjacency information on half-edges

Each edge has 2 half-edges (the boundary edge has 1)

Half-Edge Data Structure (cont.)
Halfedges are oriented consistently in counterclockwise order around
each face
Each halfedge designates a unique corner on each face (can be used to
store texture coordinates, later in texture mapping)

• For each halfedge, we store:
• the vertex it points to (its target);
• its adjacent face (the face this halfedge

locates);
• the next halfedge of the face;
• the previous halfedge in the face;
• its twin halfedge;

• For each vertex: store one of its incident incoming
halfedges

• For each face: store one of its halfedges
• For each edge: store its two halfedges
of halfedges H is about 6 times of V :

 72 bytes /triangle

Half-Edge Data Structure (example)
1). Containers store primitives:

The Vertex Container* v1 … v6

The Half-Edge Container [v1,v2], [v2, v3], [v3, v1], [v1, v3], [v3, v4], …

The Edge Container [v1,v3], [v1,v2], [v2,v3], [v1,v4], [v3,v4], …

The Face Container f1[v1,v2,v3] … f5[v4,v3,v6]

Note*: the container could be array, list, binary
search tree…
(it depends, our sample codes used list)

Half-Edge: [v1, v2] or [v2, v1] ?

Should be consistent: e.g. CCW in our configuration

Half-Edge Data Structure (example)
1). Containers store primitives:

The Vertex Container* v1 … v6

The Half-Edge Container [v1,v2], [v2, v3], [v3, v1], [v1, v3], [v3, v4], …

The Edge Container [v1,v3], [v1,v2], [v2,v3], [v1,v4], [v3,v4], …

The Face Container f1[v1,v2,v3] … f5[v4,v3,v6]

Face

Vertex

Edge

Half-Edge

2). Relationship between primitives:

Using Half-Edge Data Structure
1. How to check whether a vertex/edge/face is on the boundary?

2. How to track the boundary?

3. How to find your one-ring neighbor?

4. How to do subdivision/simplification…?

Face

Vertex

Edge

Half-Edge

Half-Edge Data Structure (cont.)
Warm-up Assignment:
Compile and run the “meshlib”
codes; use it to load a mesh

Face

Vertex

Edge

Half-Edge

1) Go through “iterators.h” and “mesh.h”, to
see how you can traverse global/local
elements.

2) Go through “read()” method, to see how
this structure is built up.

Half-Edge Data Structure (cont.)

Questions about Half-Edge Data
Structure, or the assignment?

Some 3D Models in Polygonal Meshes

 Before we can design a fully robust/powerful GUI and visualization
system (which you may keep doing through the semester), here are 3D
shapes for you to play a little bit with :

 Some mesh data (.m format) can be downloaded at:
http://www.ece.lsu.edu/xinli/teaching/meshdata1.zip

 A small viewer “G3dOGL.exe” (for .m format mesh) can be downloaded
at: http://www.ece.lsu.edu/xinli/Tools/G3dOGL.exe

 (you can drag your downloaded “.m” file into it directly)

 Many 3D shapes/data online (but in various formats):
 Stanford 3D Scanning Repository:

http://graphics.stanford.edu/data/3Dscanrep/
 Aim@Shape Repository: http://shapes.aim-at-shape.net/index.php
 Google 3D warehouse

http://www.ece.lsu.edu/xinli/teaching/meshdata1.zip
http://www.ece.lsu.edu/xinli/teaching/meshdata1.zip
http://www.ece.lsu.edu/xinli/teaching/meshdata1.zip
http://www.ece.lsu.edu/xinli/Tools/G3dOGL.exe
http://www.ece.lsu.edu/xinli/Tools/G3dOGL.exe
http://www.ece.lsu.edu/xinli/Tools/G3dOGL.exe
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://shapes.aim-at-shape.net/index.php
http://shapes.aim-at-shape.net/index.php
http://shapes.aim-at-shape.net/index.php
http://shapes.aim-at-shape.net/index.php
http://shapes.aim-at-shape.net/index.php
http://shapes.aim-at-shape.net/index.php
http://shapes.aim-at-shape.net/index.php

