EE 4700-2 Review

About the final exam

- Time and Location:
 - Thursday Dec. 10th , 12:30pm-1:30pm
 - @ this room
- 15~20 questions:
 - Most are "Multiple Choice" or "True&False"
 - Things covered in our slides or addressed in the class
- Course Project: due 8pm December 13th
- About the homework:
 - before midnight December 6th (upto 60%)

Review Outlines

- Basic Computer Graphics
 - Triangle Mesh and Half-Edge Data Structure
 - Transformation and 3D graphics pipeline
 - Some Basic OpenGL Programming
 - Texture Mapping
- Basic Geometric Modeling
 - Curves and Surfaces
 - Barycentric Coordinates
 - Spline
- Basic Geometric Processing
 - Progressive Mesh
 - Parameterization
 - Remeshing
 - Deformation

Triangle Mesh

- Two tables
 - Vertex table \rightarrow geometric information
 - Facet table \rightarrow topological information
- A piecewise linear approximation of the 3D shape
- Triangle mesh is one of the most popular representation method in computer graphics:
 - Triangulation can always be generated from discrete sampling points
 - Supporting local refinement
- Half-Edge data structure
 - Why? How?

Transformation

- Linear Transformation
 - Scaling
 - Rotation
 - Shear
 - Translation *
- Homogeneous Coordinates
- 3D Rotation
 - Matrix for rotating an angle about an axis
 - Matrix for rotating a vector to an axis
- Projection
 - Types: parallel projection and perspective projection

OpenGL Programing

- Commands format
- Primitives
- A state machine, states remains until changed
- Modeling and viewing transformations
- Rendering pipeline

Texture Mapping

- 2D Texture Mapping
- Bump and Normal Mapping
- Environment Mapping
- Light mapping
- 3D Procedural Texture

Curve and Surface

- Curves are different with Surfaces because of their topology
 - Topological equivalence
 - = (intuitively) existing a non-degenerate, continuous deformation
 - = (strictly) existing a bijective mapping that is continuous in both directions
 - Curve, surface, volumetric, ... definition
 - Continuous definition
 - Discrete analogy using simplicial complex
- Topological classification of surfaces
 - # of connected components
 - # of boundaries
 - Genus
 - Orientability
 - How to compute them?

Barycentric Coordinates

- On Curve
- On Surface
- On higher dimensional simplicial complex (n-dimension)

Progressive Mesh

- Level of detail
- Multiresolutional modeling/processing
- Edge collapse, vertex split
- Progressive transmission
- Progressive tetrahedral meshes

Spline

- Piecewise linear, piecewise polynomial, and piecewise rationale
- Hermite Curve, Bezier Curve and B-Spline
- Parametric/Geometric Continuity
- From Bezier Curve to B-Spline to NURBS
- Tensor product surface
- Spline fitting
 - Interpolation
 - Parameterization
 - Knots vector
 - Fitting with a linear system
 - Approximation

Surface Parameterization

- Definition
- Mapping criteria: length-preserving, angle preserving, area preserving
- Spring model and the linear system for flattening the mesh
 - Graph embedding and cotangent weights
 - Bijectivity?
- Conformal mapping and harmonic mapping
- Relationship among length-, angle-, and area-preserving
 - Length preserving = angle preserving + area preserving

Remeshing

- Definition
- Motivation
- Three General approaches to remeshing
 - Subdivision + Simplification (Progressive Mesh)
 - Insert some vertices, then remove some vertices
 - Resampling
 - Directly conduct a sampling to generate all vertices as new
 - Mesh Optimization
 - Move vertices on the surface to optimize the mesh quality
- A method based on surface mapping
 - Sampling
 - Parameterization
 - Delaunay triangulation
 - Centroidal Voronoi Diagram to adjust the sample points positions

Deformation

- Definition
- General approach:
 - Define an energy that approximates the original shape
 - When some points move, resolve all other points position so that the energy is minimized and the change is meaningful