

Preservation of angles

Isoparametric lines

Conformality

Angle-preserving + locally isotropic

Behavior w.r.t. sampling

"A well-shaped element in parameter space will not be deformed too much once lifted in embedding space"

Motivation Previous work Contributions Algorithm

- sample repartition *error diffusion*
 - conformal
- parameterization
- meshing
- sample placement

Constrained Delaunay triangulation in parameter space [CGAL] -> solves robustness issues Motivation Previous work Contributions Algorithm

- sample repartition
- parameterization
- meshing

error diffusion conformal Delaunay

- sample placement

Sample placement

Given a bounded domain and a density function,

sampling

- Ξ
- partitioning the domain
- repartitioning the density function among a set of samples

Sample placement

- partitioning the domain
 -> Voronoi tessellation
- repartitioning the density function among a set of samples
 - = Equal-mass enclosing

Isotropic sampling

- sampling
 - partitioning
 - equal-mass enclosing

• isotropic sampling

 each tiles as compact as possible

Centroidal Voronoi diagram

Ordinary Voronoi diagram

Centroidal Voronoi diagram

Sites coincide with centroids (center of mass)

<u>Weighted</u> Centroidal Voronoi diagram

Centroidal Voronoi diagram

Used for:

- optimal clustering
- optimal repartition of resources
- quantization
- tiling, etc. [Du *et al.* 01]

Note:

- special configuration, not algorithm
- several algorithms: Lloyd, k-means, etc.
- works in nD

Sample placement

Two process sorted by increasing degrees of freedom:

- 1. build 1D WCVD
- 2. build 2D WCVD via Lloyd relaxation

Density approximation

- Piecewise linear on new samples
- Low pass filter density function for undersampling
- Exploit "de Gabriel" properties for better efficiency

Motivation Previous work Contributions Algorithm **Results** Limitations Conclusions **Future Work**

Smooth gradation

CAD models

Feature backbones:

- 1D error diffusion
- arc-length parameterization of backbones
- 1D WCVD

Genus>0 model

- cutting -> cut graph
- add cut graph to feature skeleton
 -> twin backbones associated pairwise
- synchronize sampling along twin backbones to guarantee stitching

uniform sampling 300,000 vertices

Motivation Previous work Contributions Algorithm Results Limitations Conclusions Future Work

Limitations

- Parameterization
 - still some numerical issues for huge models
 - quality of sampling is very dependent on the quality of the parameterization
- Complex genus or closed surface
 - requires surface cutting (difficult task)
 - process "curve sampling " along the cut graph
 - makes the implementation trickier (seaming backbones, twin samples to synchronize for stitching, branching vertices, etc.)

Limitations

The Camel

- Closed
- Genus O
- Sock-like shapes

how to cut it? ->

Remeshing with Free vs fixed boundary

Motivation Previous work Contributions Algorithm Results Limitations Conclusions **Future Work**

Conclusion

- Guarantee: vertex budget
- Centroidal Voronoi diagram: captures the essence of isotropic sampling
- Flexible design through density
- Handle features
- Handle important area distortion
- Still some limitations

Anisotropic Remeshing

K_{min}