Surface Mapping (1,2) Nov. 5, Nov.10, 2009

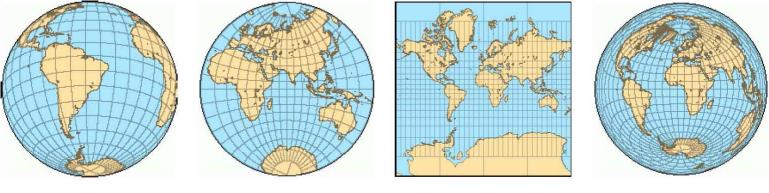
Review

- <u>Texture mapping</u>: a technique that generates enhanced effects over simple geometry shapes
 - From geometry space to the texture (image) space
 → surface mapping
 - Quality of the mapping: dictates the effect of texture mapping (low distortion preferred)
- <u>Spline Representation</u>: a compact representation, good for precise computer aided design, and scientific computing
 - For spline fitting : a good parameterization is important for generating smooth spline with small # of control points

Surface Mapping Definition

- Image Texture Mapping:
 - A one-to-one map from geometry shape S to a texture image (2D domain) D
 - D is usually a rectangular domain, e.g. $D = [0, 1] \times [0, 1]$
 - The mapping: a vector function $\vec{f}: S \to D \subset \mathbb{R}^2$, composed by two scalar function f_u and f_v .
 - ⇔Define a "u-v" coordinates over the surface S.
 - Infinite mapping ways, which one is good?

Historical Background

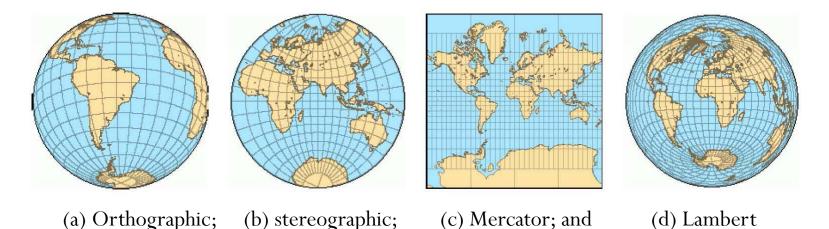


- (a) Orthographic;
- (b) stereographic;

(d) Lambert

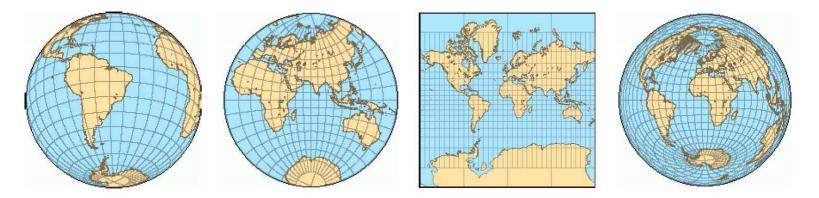
- Cartography
- Distortion: angles and areas distortion
 - Isometry: no distortion
 - Not all surfaces has the isometry to a planar region
 - Peeling oranges \rightarrow can't be without distortion
- Ptolemy was the first known to produce the data for creating a map showing the world (100-150AD)
 - [Geography] \rightarrow project a sphere by longitude and latitude

Historical Background (cont.)



- (a) The orthographic projection (Egyptians and Greeks, > 2000 years ago) → modifies both angles and areas
- (b) Stereographic projection (Hipparchus, 190-120B.C.) → preserves angles, not areas
- (c) Mercator projection (Mercator 1569) \rightarrow preserves angles, not areas
- (d) Lambert projection (Lambert 1772) \rightarrow preserves areas, not angles

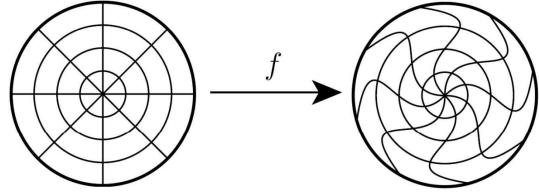
Good "UV" versus bad "UV"?



- What do we look for? What do we preserve?
- Should we map it onto a rectangle? Or a disk? Or something awkward? What do we choose?
- If the target shape is fixed (e.g. a rectangle, or a disk...), what is the best mapping then?
- At this beginning stage:
 - Source: a genus-zero open surface (topological disk)
 - Target: planar shape is fixed

Mapping Criteria

- Angle Distortion: change of the local angles
 - Conformal mapping: no angle distortion (locally, a right angle \rightarrow a right angle, or a circle \rightarrow a circle)
- Area Distortion: change of the local area
 - Equiareal mapping: no area change
- Isometric Mapping: neither angles nor area distortion
- Isometric ⇔ conformal + equiareal
- Isometry exists between a given surface and a planar domain, only if this surface is "developable"
- Purely Equiareal Mapping is infinitely dimensional and not necessarily useful

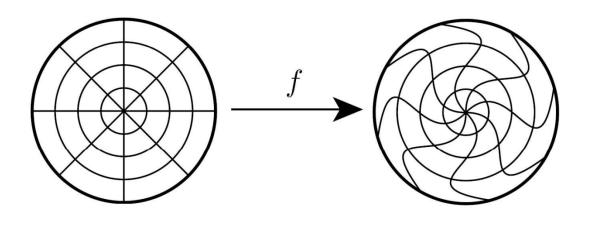


Mapping Criteria

• Therefore:

Given an arbitrary topological disk surface and a planar domain

- Isometric mapping rarely exists
- Conformal mapping always exists (Riemann Mapping Theorem)
- Infinitely many equiareal mapping, as a pure criterion, not easy to control and design



From discrete aspects...

- Another intuitive way to start with, unlike mapping and its distortion defined in continuous case:
 - Given a mesh of strings (topological disk), with its boundary vertices pinned along a planar rectangle (or any other simple planar convex polygon*) boundary
 - Where do we place the interior vertices on the planar region within region of the boundary
- We might simply want to find an analogy of "barycentric coordinates" locally (<u>why? Think about the curve case...</u>)
- →iteratively adjust each "uv" locally according to its neighboring information

$$\sum_{j \in N_i} w_{ij}(f(v_j) - f(v_i)) = 0, \qquad v_i \in V_I, \qquad \lambda_{ij} = w_{ij} / \sum_{k \in N_i} w_{ik},$$

$$f(v_i) = \sum_{j \in N_i} \lambda_{ij} f(v_j), \qquad v_i \in V_I.$$

Mesh Mapping

- A physical model:
 - Edges of the triangle mesh are springs (spring network)
 - Fix the boundary on the plane
 - Relax the interior of this network
 - Physical law being the only rule
 - Stabilized position \rightarrow mapping for the interior vertices
- A simplified model mesh with n+b (interior: 1.. n, boundary: n+1...n+b) vertices:
 - The rest string length $\rightarrow 0$
 - Potential energy $\rightarrow (Ds^2)/2$, (D-constant, s-final string length)
 - Boundary vertices $p_i \rightarrow u_i$ (2d-vector u_i)
 - Minimize spring energy:

$$E = \frac{1}{2} \sum_{i=1}^{n+b} \sum_{j \in N_i} \frac{1}{2} D_{ij} \| \boldsymbol{u}_i - \boldsymbol{u}_j \|^2,$$

where $D_{ij} = D_{ji}$ is the spring constant of the spring between p_i and p_j

Mesh Mapping (cont.)

• To find the minimized solution:

(for any interior vertex i=1...n)

• Remove boundary points from the left to right hand side:

$$\boldsymbol{u}_i - \sum_{j \in N_i, j \leq n} \lambda_{ij} \boldsymbol{u}_j = \sum_{j \in N_i, j > n} \lambda_{ij} \boldsymbol{u}_j$$

• Lead to two sparse linear systems (in two axis directions):

$$AU = \bar{U} \quad \text{and} \quad AV = \bar{V},$$

$$\bar{u}_i = \sum_{j \in N_i, j > n} \lambda_{ij} u_j \quad \text{and} \quad \bar{v}_i = \sum_{j \in N_i, j > n} \lambda_{ij} v_j$$

$$A = (a_{ij})_{i,j=1,\dots,n} \quad : \quad a_{ij} = \begin{cases} 1 & \text{if } i = j, \\ -\lambda_{ij} & \text{if } j \in N_i, \\ 0 & \text{otherwise.} \end{cases}$$

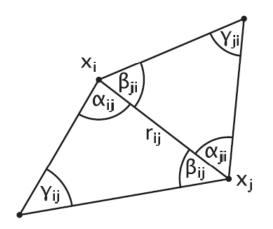
(1) Boundary Mapping

- Don't want fold-overs \rightarrow not a projection
- Flatten a curve:
 - a) Choosing the shape of the planar domain boundary
 - b) Choosing the distribution of the points on the boundary
- a) Boundary Shape: Usually rectangle, circle ...
 - Convex shape \rightarrow bijectivity guarantees for many weights
 - Larger distortion when surface is highly concave
- b) Distribution: Usually chord length, ...
 - Working pretty well in most cases
 - Including the boundary points in the optimization \rightarrow less distortion

(2) Interior Mapping- different weights

Different D_{ij}:

- Wachspress coordinates:
 - Earliest generalization of barycentric coordinates
 - Mainly used in finite element methods
- Harmonic coordinates:
 - Standard piecewise linear approximation to Laplace equation
 - Minimizing deformation energy
- Mean value coordinates:
 - Discretizing mean value theorem of harmonic function
 - Positive weights guaranteed, stable parameterization



$$w_{ij} = \frac{\cot \alpha_{ji} + \cot \beta_{ij}}{r_{ij}^2}$$

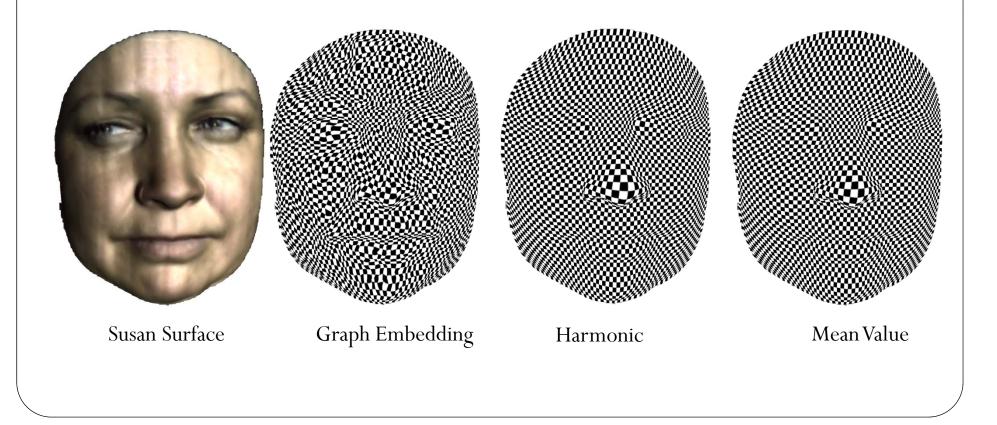
$$w_{ij} = \cot \gamma_{ij} + \cot \gamma_{ji}$$

$$w_{ij} = \frac{\tan\frac{\alpha_{ij}}{2} + \tan\frac{\beta_{ji}}{2}}{r_{ij}}$$

It has been proved that: Any symmetric weights $(w_{ij}=w_{ji})$ minimizes a spring energy.

Three different popular formula

- Graph Embedding: [Tutte 1963]
- Discrete Harmonic Mapping: [Eck 1995]
- Meanvalue Coordinates: [Floater 1997]



Three different popular formula

• On another surface:

Bimba Surface

Mean Value

Graph Embedding

Harmonic

- Visually, we can tell the difference.
- But how to judge them numerically? And where do these mapping formula come from?
 - E.g. why the harmonic mapping looks conformal?
- How do we design (or choose to use) a mapping technique?
 - E.g. shall we always use harmonic?
- Purely Conformal or a Balance?
 - Applications needs angle-preserving
 - Applications that also needs area-preserving
- How about more general surfaces?
 - Closed Genus-0 surfaces → spherical mapping
 - Higher genus surfaces \rightarrow global parameterization
 - Surface to surface \rightarrow inter-surface mapping

Differential Geom. Background

• A surface $S \subset \mathbb{R}^3$ (2-manifold), has the parametric representation:

$$\mathbf{x}(u^1, u^2) = (x_1(u^1, u^2), x_2(u^1, u^2), x_3(u^1, u^2))$$

for points $\,(u^1,u^2)\,$ in some domains in ${\rm I\!R}^2$

- A representation is <u>regular</u> if
 - i. The functions x_1, x_2, x_3 are smooth (differentiable when we need)

ii. The vectors
$$\mathbf{x}_1 = \frac{\partial \mathbf{x}}{\partial u^1}$$
, $\mathbf{x}_2 = \frac{\partial \mathbf{x}}{\partial u^2}$ are linearly independent

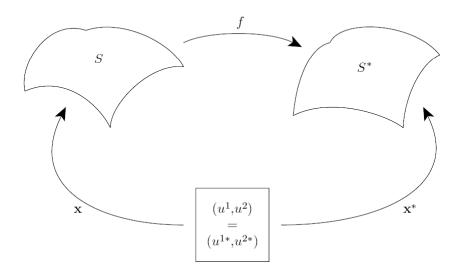
1st fundamental form (quadratic inner product on the tangent space):
 → permits the calculation of surface metric

$$ds^{2} = \mathbf{x}_{1} \cdot \mathbf{x}_{1} (du^{1})^{2} + 2 \,\mathbf{x}_{1} \cdot \mathbf{x}_{2} \,du^{1} du^{2} + \mathbf{x}_{2} \cdot \mathbf{x}_{2} (du^{2})^{2}$$

denoting $g_{\alpha\beta} = \mathbf{x}_{\alpha} \cdot \mathbf{x}_{\beta}, \qquad \alpha = 1, 2, \quad \beta = 1, 2,$

We have
$$ds^2 = (du^1 du^2) \mathbf{I} \begin{pmatrix} du^1 \\ du^2 \end{pmatrix}$$
, where $\mathbf{I} = \begin{pmatrix} g_{11} & g_{12} \\ g_{12} & g_{22} \end{pmatrix}$

Differential Geom. Background (cont.)



f is <u>allowable</u> if the parameterizations x and x^* are both regular.

Isometric mappings

 $\textbf{Isometric} \Leftrightarrow \textbf{length-preserving}$

(e.g. cylinder \rightarrow plane (cylindrical coordinates \rightarrow Cartesian coordinates))

Theorem 1. An allowable mapping from S to S^* is isometric if and only if the coefficients of the first fundamental forms are the same, i.e.,

 $\mathbf{I}=\mathbf{I}^{*}.$

Under an isometry:

- Curve-lengths don't change
- Angles don't change
- Areas don't change
- Gaussian curvatures don't change

Conformal mappings

Conformal \Leftrightarrow angle-preserving (e.g. stereographic and Mercator projections)

Theorem 2. An allowable mapping from S to S^* is conformal or anglepreserving if and only if the coefficients of the first fundamental forms are proportional, i.e.,

$$\mathbf{I} = \eta(u^1, u^2) \,\mathbf{I}^*,\tag{1}$$

for some scalar function $\eta \neq 0$.

Under an conformal map:

- Angles don't change
- \Box Circle \rightarrow another circle (only scaling allowed)

Equiareal mappings

Equiareal ⇔ area-preserving (e.g. Lambert projections)

Theorem 3. An allowable mapping from S to S^* is equiareal if and only if the discriminants of the first fundamental forms are equal, i.e.,

$$g = g^*. \tag{2}$$

(Note that: $g = \det \mathbf{I} = g_{11}g_{22} - g_{12}^2$)

Theorem 4. Every isometric mapping is conformal and equiareal, and every conformal and equiareal mapping is isometric, i.e.,

isometric \Leftrightarrow conformal + equiareal.

An example: planar mappings

A planar mapping is a special type of the surface mapping: $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x, y) = (u(x, y), v(x, y))$ its 1st fundamental form: $\mathbf{I} = J^T J$ where $J = \begin{pmatrix} u_x u_y \\ v_x v_y \end{pmatrix}$ is the Jacobian of f.

Proposition 1. For a planar mapping $f : \mathbb{R}^2 \to \mathbb{R}^2$ the following equivalencies hold:

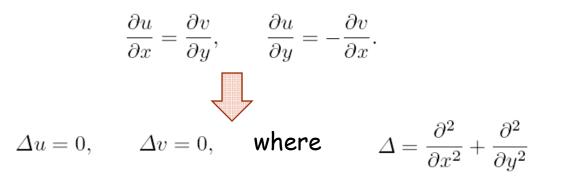
1. f is isometric \Leftrightarrow $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \underline{\lambda_1} = \lambda_2 = 1$ 2. f is conformal \Leftrightarrow $\mathbf{I} = \begin{pmatrix} \eta & 0 \\ 0 & \eta \end{pmatrix} \Leftrightarrow \underline{\lambda_1}/\lambda_2 = 1$ 3. f is equiareal \Leftrightarrow det $\mathbf{I} = 1 \Leftrightarrow \lambda_1 \lambda_2 = 1$

eigenvalues of I

Conformal→Harmonic

A conformal mapping

- a complex function satisfies the Cauchy-Riemann equation:



A harmonic mapping

- a complex function satisfies these two Laplace equations

```
Isometric → Conformal → Harmonic
```

Harmonic Mapping

- Easy to compute, easy to approximate
- Guaranteed existence (when suitable boundary mapping is provided)
- Minimizing deformation (minimizing the Dirichlet energy)

Theorem 5 (RKC). If $f: S \to \mathbb{R}^2$ is harmonic and maps the boundary ∂S homeomorphically into the boundary ∂S^* of some convex region $S^* \subset \mathbb{R}^2$, then f is one-to-one;

- Conformality depends on the boundary condition
- One-sidedness

Harmonic Map & its Intuition

Minimizing deformation

$$E_D(f) = \frac{1}{2} \int_S \|\text{grad}f\|^2 = \frac{1}{2} \int_S \left(\|\nabla u\|^2 + \|\nabla v\|^2\right)$$

-- minimize the magnitude of the change

- Intuitive explanation
 - 🗆 1D
 - 🗆 2D
 - 🗆 3D

