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Parametric Solids

Can represent heterogeneous volumetric data:

* Tricubic solid p(u,v,w) = f i f a, u'viw

i=0 j=0 k=0

u,v,we [0,1]

p(u,v,w) = Y_Jylylpuk B;(u)B;(v)B, (w)

e Bezier solid

 B-spline solid

pU,v,w) = ZzzpijkBi,l (u) B, , (V)B, « (W)
]k
- NURBS solid |
22 2 Pyl By (U)B , (V)By « (W)

L) = Z Z Z Qi Bii (U)B, (V)By « (W)




Free-form Deformation

* Geometric objects are embedded into a space

» The surrounding space is represented by using
commonly-used, popular splines

* Free-form deformation of the surrounding space

* All the embedded (geometric) objects are
deformed accordingly, the quantitative
measurement of deformation is obtained from the
displacement vectors of the trivariate splines that
define the surrounding space

* Essentially, the deformation is governed by the
trivariate, volumetric splines

* Popular in graphics and related fields

(Will be discussed in EE7000 course.)
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Free-form Deformations

(courtesy of Pauly et al.)




Overview: Spline Fitting

e Introduction and Classification

» Interpolation

e Global interpolation
Global curve interpolation
Global surface interpolation

 Local interpolation
Local curve interpolation
Local surface interpolation

e Approximation

» Global approximation
Least square curve approximation

Least square surface approximation
 Local approximation

Piegl, L., Interactive data interpolation by rational Bézier curves, /EEE
Comput. Graph. and Appl., Vol. 7, No. 4, pp. 45-58. 1987.

Chou, J., and Piegl, L., Data reduction using cubic rational B-splines,
IEEE Comput. Graph. and Appl., Vol. 12, No. 3, pp. 6068, 1992.




Introduction

* We have discussed forms and properties of splines

This class: How to really construct them from given geometric
data, so that the given data can be converted to the spline
representation?

» For some specific data with a known equation representation, we can
construct the spline (e.g. a circle)

e For most free-form shapes > fitting

» Two types of fitting problems:

e Interpolation

e Approximation

Two categories of fitting algorithms
* Global

* Local

N




Introduction (cont.)

0 Many fitting algorithms, hundreds of papers
> Which is the "right" answer?

- Given data never specifies a unique solution (infinitely many NURBS can
be generated to interpolate/approximate the given data in
mathematically correct ways)

= We can seek appropriate:

1) Degree of splines (or it can be given by the user as the requirement)
If we want C' continuity, then degree must satisfy: p>=r+1

p=r+1 is generally adequate for interpolation, but p>r+1 may produce better
results (e.g. less control points in approximation)

2) Control points: most algorithms seek efficient way for their placement
3) Knots :many methods on their choosing
4) Weight : Little work on its setting




Problem Classification

a Interpolation

Q Construct a spline that satisfies the given
data precisely

Qi.e. the curve passes through all given
points

0 Approximation

Q Construct a spline which do not
necessarily satisfy the given data
precisely, but only approximately

Q Only try to capture the shape not the
wiggle, due to measurement of
computational noise

Q Spline should be bounded by a preset
deviation, and sometimes should satisfy
given constraint points precisely




Algorithm Classification

a Global algorithms
O A system of equations or an optimization problem is set up globally
Q If: (1) the given data consists of only points and derivatives, and

(2) (we preset degree, knots, and weights) only solve the control points as
unknowns

O Then: the system is linear and can be efficiently solved.

0 Otherwise: when we need to fit curvature, when we need to solve
knots/weights... > nonlinear optimization, and a perturbation of one input locally
can change the shape globally

3 Local algorithms
Q Construct the spline segment-wise, using only local data for each step
v A perturbation only changes the shape locally
v Algorithms are usually computationally less expensive
v Can deal with cusps, straight segments, and other local data anomalies better
< Need to work on getting desired continuity at segment boundaries
< Multiple interior knots




Global Interpolation - Curve (1)

0 Input: a set of points{Qi}, k=0,...,n
0 Output: an p-degree nonrational B-spline curve, interpolating them

O If we assign
0 a parameter value iy, to each Q;
0 Appropriate knots vector U = {ug,...,un}

O Then we solve a (n+1)*(n+1) linear equation system:

Qi = C(iix) = ) Ny () P

i=0

(with the same coeffici
direction)

matrix, solve a linear system on each axis

1 ifu; <u<uiq

Basis function, we denoted it as Bipin Nio(u) = {n otherwise

previous slides. Here uses N to denote

the non-uniform knots. ) U — U
n‘:‘,p[u) =

Uipp — Ui Uitp+1 — Uitl

; —u
— Nip-1{u)+ —itptl Nit1,p-1(1)
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Global Interpolation - Curve (2)

0 Choosing parameter value @, (assuming we put parameter inside
the range = € [0,1] ):
Three common methods:
1) Equally spaced: 5 -9 g, =1
k

Up = — k=1,...,n—l

n
- not recommended, can produce erratic shapes when the data is unevenly spaced

2) Chord length: n
) oraieng d=3"1Qx— Qi ,l

k=1

ﬁu=ﬂ ﬁ“=l ﬁk=ﬁku1+‘|‘9'k—:§i_j k=1,..., n—1

- Most widely used, generally adequate, approximates a uniform parameterization

3) Centripetal method:
) P d= \J[Qk“Qk_ﬂ
| Qx — Qi |

0 iy =1 Uiy = fig-1 + d k=1,..., n-—1

E]

Il
i

k
Up

- Better results when the data takes very shape turns




Global Interpolation - Curve (3)

0 Selecting knots vector U:
0 Two common methods:
1) Equally spaced:

'Iﬂ:"':up:[]
J :
A e —— i=1l...,n-p

- not recommended, can produce a singular system of equations
2) Parameter Averaging: , _ .. Uy =0 wpy= = um =1
1j+p—1
Ujpp = — iy ji=1,...
P
Knots reflect the distribution of the parameter value
The linear system is positive, semibandwidth < p

[ De Boor, C., A Practical Guide to Splines, New York: Springer-Verlag, 1978. ]




Global Interpolation - Curve (4)

Py

O Examples: ST
M N

A Parameters chosen by the chord length method P, ff'l Q
QO Knots obtained by parameter averaging . la,

(2)
A cubic curve interpolating data with different
parameterizations and knots:

Q Uniform parameters + uniform knots
(solid curve, top knot vector)

+ o -—t—o 1

2
T
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Global Interpolation - Curve (5)

0O Examples (cont.):
(3)

A cubic curve interpolating data with different
parameterizations and knots:

Q Uniform parameters + uniform knots

(solid curve, top knot vector) -

A Chord length parameters + parameter avemgmg »
(dashed, middle knot vector)

Q Centripetal parameters + par'ame’rer' aver'agmg
(dotted, bottom knot vector)
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Global Interpolation - Surface (1)

a Input: (n+1)*(m+1) points {Queh k=0,...,nand £=0,...,m,

0 Output: an (p,q)-degree nonrational B-spline surface, interpolating

these points: . m
Qi.e = S(ux,0e) = D D Nipl(@k) Ny, (0) P

i=0 =0

0 Again, we need to assign
QO parameter values (a,5) and knots vector U and V

O Then we solve linear equation systems.




Global Interpolation - Surface (2)

0 Parameterization:
O Show how to compute %k, the ¥z are analogous

0 A commonh way:
1) curve parameterization method (chord length) on #f, ..., @ for each £

2) qet @ by averaging: i
) get @ by ging ﬁk=m;+lz-ﬁi k=0,....n
=0

0 Computing Knots Vectors:

3 Simply use the parameter averaging method mentioned
previously

uu=---=up=[} %_pzu-_—_um:]_

13+P“
Ujpp = Z i i=1..,n-p




/

Global Interpolation - Surface (3)

a Solving Control Points:
(1) direct method:

Qk, ¢ = S(tk, V¢) = Z ZN plUe)N

1=0 j=0

u(“f]

> (n+1)*(m+1) linear equations in the unknown P;,
(2) a simpler and more efficient method for tensor product

surfaces : sequential curve interpolations

Qi = Z i,p(ti) (ZN;,q{m)P‘-.

i=0

J‘) = ZN{,p[ﬁk)Rt—,g
i=0

m
where R;:= Z N q(Te) Py 5

j:ﬂ
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Global Interpolation - Surface (4)

Q Algorithm for (2) on the last page:

1. using U and the @, do m +1 curve interpolations through Qg ,,..., Q¢
(for £=0,...,m); this yields the R, ¢

2. using V and the #;, do n + 1 curve interpolations through R, g,...,Rim
(for ¢ = 0,...,n); this yields the P, ;

L W Tt Qog
Qg -7 I R
o - ",

. \ -

. _'h““-'-..‘Qn.a

- T Qaa

v
[
D K
by
W
e

Rs3

R;;

UThe algorithm is
symmetric.
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Homework 2




