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Parametric S lidsParametric Solids
Can represent heterogeneous volumetric data:

Tricubic solid
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Free f rm Def rmati nFree-form Deformation
Geometric objects are embedded into a space
The surrounding space is represented by using The surrounding space is represented by using 
commonly-used, popular splines
Free-form deformation of the surrounding space
All th  b dd d ( t i ) bj t   All the embedded (geometric) objects are 
deformed accordingly, the quantitative 
measurement of deformation is obtained from the 
displacement vectors of the trivariate splines that displacement vectors of the trivariate splines that 
define the surrounding space
Essentially, the deformation is governed by the 
trivariate  volumetric splinestrivariate, volumetric splines
Popular in graphics and related fields

(Will be discussed in EE7000 course.)



F f m D f m ti nFree-form Deformations

(courtesy of Pauly et al.)



Overview: Spline FittinOverview: Spline Fitting
Introduction and Classification
Interpolation

Global interpolation
Global curve interpolation
Gl b l f  i l iGlobal surface interpolation

Local interpolation
Local curve interpolation
Local surface interpolationLocal surface interpolation

Approximation
Global approximation

Least square curve approximationL ast squar  cur  appro mat on
Least square surface approximation

Local approximation



Intr ducti nIntroduction
We have discussed forms and properties of splines
This class: How to really construct them from given geometric 
data, so that the given data can be converted to the spline 
representation?

For some specific data with a known equation representation, we can 
construct the spline (e.g. a circle)
For most free-form shapes fitting

Two types of fitting problems:
Interpolationp
Approximation

Two categories of fitting algorithms
GlobalGlobal
Local



Intr ducti n (c nt )Introduction (cont.)
Many fitting algorithms, hundreds of papers

Which is the “right” answer?
Given data never specifies a unique solution (infinitely many NURBS can 
be generated to interpolate/approximate the given data in 
mathematically correct ways)mathematically correct ways)

We can seek appropriate:
1) Degree of splines (or it can be given by the user as the requirement)

If  t Cr ti it  th  d  st s tisf : > + 1If we want Cr continuity, then degree must satisfy: p >= r + 1
p=r+1 is generally adequate for interpolation, but p>r+1 may produce better 
results (e.g. less control points in approximation) 

2) Control points: most algorithms seek efficient way for their placement) p m g m ff y f p m
3) Knots    : many methods on their choosing
4) Weight : Little work on its setting



Pr blem Classificati nProblem Classification
Interpolation

Construct a spline that satisfies the given 
data precisely
i.e. the curve passes through all given 
pointspoints

Approximation
Construct a spline which do not 
necessarily satisfy the given data necessarily satisfy the given data 
precisely, but only approximately
Only try to capture the shape not the 
wiggle, due to measurement of gg ,
computational noise
Spline should be bounded by a preset 
deviation, and sometimes should satisfy 
i  t i t i t  i lgiven constraint points precisely



Al rithm Classificati nAlgorithm Classification
Global algorithms

A system of equations or an optimization problem is set up globally
If: (1) the given data consists of only points and derivatives, and 

(2) (we preset degree, knots, and weights) only solve the control points as 
unknownsunknowns
Then: the system is linear and can be efficiently solved. 
Otherwise: when we need to fit curvature, when we need to solve 
knots/weights… nonlinear optimization, and a perturbation of one input locally 

 h  th  h  l b llcan change the shape globally

Local algorithms
Construct the spline segment-wise, using only local data for each step
A p t b ti n nl  h n s th  sh p  l llA perturbation only changes the shape locally
Algorithms are usually computationally less expensive
Can deal with cusps, straight segments, and other local data anomalies better
Need to work on getting desired continuity at segment boundariesNeed to work on getting desired continuity at segment boundaries
Multiple interior knots



Gl bal Interp lati n Curve (1)Global Interpolation – Curve (1)
Input: a set of points
Output: an p-degree nonrational B-spline curve, interpolating them
If we assign 

a parameter value p
Appropriate knots vector 

Then we solve a (n+1)*(n+1) linear equation system:

(with the same coefficient matrix, solve a linear system on each axis 
direction)direction)

Basis function, we denoted it as Bi,p in 
previous slides. Here uses N to denote 
th if k tthe non-uniform knots.



Gl bal Interp lati n Curve (2)Global Interpolation – Curve (2)
Choosing parameter value (assuming we put parameter inside 
th                )the range              ):
Three common methods:
1) Equally spaced:

not recommended, can produce erratic shapes when the data is unevenly spaced
2) Chord length:

Most widely used, generally adequate, approximates a uniform parameterization
3) Centripetal method:

Better results when the data takes very shape turns



Gl bal Interp lati n Curve (3)Global Interpolation – Curve (3)
Selecting knots vector U:

Two common methods:
1) Equally spaced:

not recommended, can produce a singular system of equations
2) Parameter Averaging:

Knots reflect the distribution of the parameter value
Th  li  t  i  iti  ib d idth  The linear system is positive, semibandwidth < p
[                                                                                                              ]



Gl bal Interp lati n Curve (4)Global Interpolation – Curve (4)
Examples:
(1)

Parameters chosen by the chord length method
Knots obtained by parameter averaging

(2)
A cubic curve interpolating data with different A cubic curve interpolating data with different 

parameterizations and knots:
Uniform parameters + uniform knots
(solid curve, top knot vector)
h d l h    Chord length parameters + parameter averaging

(dashed, middle knot vector)
Centripetal parameters + parameter averaging
(dotted  bottom knot vector)(dotted, bottom knot vector)



Gl bal Interp lati n Curve (5)Global Interpolation – Curve (5)
Examples (cont.):
(3)
A cubic curve interpolating data with different 

parameterizations and knots:
Uniform parameters + uniform knotsUniform parameters  uniform knots
(solid curve, top knot vector)
Chord length parameters + parameter averaging
(dashed, middle knot vector)
Centripetal parameters + parameter averaging
(dotted, bottom knot vector)



Gl bal Interp lati n Surface (1)
Input: (n+1)*(m+1) points

Global Interpolation – Surface (1)

Output: an (p,q)-degree nonrational B-spline surface, interpolating 
these points:

Again, we need to assign 
parameter values            and knots vector U and V

Then we solve linear equation systemsThen we solve linear equation systems.



Gl bal Interp lati n Surface (2)
Parameterization:

Global Interpolation – Surface (2)

Show how to compute     , the      are analogous
A common way: 

1) curve parameterization method (chord length) on) p ( g )
2) get      by averaging:  

Computing Knots Vectors:
Simply use the parameter averaging method mentioned 
previouslypreviously



Gl bal Interp lati n Surface (3)
Solving Control Points:

Global Interpolation – Surface (3)

(1) direct method:

(n+1)*(m+1) linear equations in the unknown Pi j(n 1) (m 1) linear equations in the unknown Pi,j

(2) a simpler and more efficient method for tensor product 
surfaces : sequential curve interpolations



Gl bal Interp lati n Surface (4)
Algorithm for (2) on the last page:

Global Interpolation – Surface (4)

The algorithm isThe algorithm is 
symmetric.



Homework 2


