

Motivations

Digital Mesh Processing:

- Skinny triangles → harmonic weights lead to flip over
- Preprocess to handle arbitrary irregular / non uniform meshes.
- Most scanned surfaces need to undergo complete remeshing before further processing.

Classifications

Most remeshing techniques fall into :

- simplification / refinement
 - Demo: Using our available tools "Meshsimplify.exe + Filtermesh.exe"
- optimization
- resampling (point sampling)

Control over:

- vertex density
- shape of elements
- etc.

Isotropic Surface Meshing

"Isotropic Surface Remeshing"

by Pierre Alliez, Eric Colin de Verdiere, Olivier Devillers, and Martin Isenburg

IEEE International Conference on Shape Modeling and Applications, 2003

Previous work

Applications in Two different fields:

Finite Element community: High-quality meshes for simulation

Computer Graphics community: Geometric modeling for effective processing and fast display

More precisely...

- Resample
 - in accordance with a density function
 - isotropic
- Match sample budget

Solution

- resample in parameter space
- use effective parameterization
- compensate for distortion

Preliminaries

Input

- Triangle surface mesh with:
 - tagged feature edges
 - tagged corners
 - density function on:
 - feature edges (sharp,boundary,cut)
 - facets (e.g., piecewise linear)
- Vertex budget (#samples)
- Note:
 - the user *specifies* a density function
 - we focus on resampling & remeshing

Feature skeleton

0-manifolds:corners1-manifolds:backbone: feature edges chained together

feature skeleton: corners + backbones

Example of density function

Curvature related density function Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. [Meyer, Desbrun, Schröder, Barr]

Algorithm

- parameterization
- meshing
- sample placement

Parameterization -> simple domain

More parameterizations

Preservation of angles

Isoparametric lines

Behavior w.r.t. sampling

"A well-shaped element in parameter space will not be deformed too much once lifted in embedding space"

Motivation Previous work Contributions Algorithm

- sample repartition *error diffusion*
- parameterization

conformal

- meshing
- sample placement

[CGAL] -> solves robustness issues

- sample repartition error diffusion

- parameterization
- meshing

conformal Delaunay

- sample placement

Sample placement

Given a bounded domain and a density function,

sampling

=

- partitioning the domain
- repartitioning the density function among a set of samples

Sample placement

- partitioning the domain
 -> Voronoi tessellation
- repartitioning the density function among a set of samples
 - = Equal-mass enclosing

Centroidal Voronoi diagram

Ordinary Voronoi diagram

- sites
- centroids

Centroidal Voronoi diagram

Sites coincide with centroids (center of mass)

<u>Weighted</u> Centroidal Voronoi diagram

Centroidal Voronoi diagram

Used for:

- optimal clustering
- optimal repartition of resources
- quantization
- tiling, etc. [Du *et al.* 01]

Note:

- special configuration, not algorithm
- several algorithms: Lloyd, k-means, etc.
- works in nD

Sample placement

Two process sorted by increasing degrees of freedom:

1. build 1D WCVD

2. build 2D WCVD via Lloyd relaxation

Motivation Previous work Contributions Algorithm **Results** Limitations Conclusions **Future Work**

Uniform vs curvature-adapted

CAD models

Feature backbones:

- 1D error diffusion
- arc-length parameterization of backbones
- 1D WCVD

Genus>0 model

- cutting -> cut graph
- add cut graph to feature skeleton
 - -> twin backbones associated pairwise
- synchronize sampling along twin backbones to guarantee stitching

uniform sampling 300,000 vertices

Motivation Previous work Contributions Algorithm **Results** Limitations Conclusions **Future Work**

Limitations

- Parameterization
 - still some numerical issues for huge models
 - quality of sampling is very dependent on the quality of the parameterization
- Complex genus or closed surface
 - requires surface cutting (difficult task)
 - process "curve sampling " along the cut graph
 - makes the implementation trickier (seaming backbones, twin samples to synchronize for stitching, branching vertices, etc.)

Limitations

- The Camel
- Closed
- Genus O
- Sock-like shapes

how to cut it? ->

Remeshing with Free vs fixed boundary

Conclusions

- Guarantee: vertex budget
- Delaunay triangulation
 given the sampling, get the optimal planar triangulation
- Centroidal Voronoi diagram → improve the sampling to capture the essence of isotropic sampling
- Density → reflects area distortion and other geometric properties (e.g. cuvatures)
- Handle features

Anisotropic Remeshing

direct

direction fields

sampling

meshing

output mesh after sh

after smoothing

