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Piecewise linear approximation
 Previous: polygonal representation (meshes) and polylines are first-

degree, piecewise linear approximations to surfaces and curves
 When the object is not piecewise linear

 To improve its approximation accuracy 
 more sample points
 large number of coordinates to be created and stored

 Interactive manipulation is tedious
 Need a more compact and more manipulable representation

 To use functions that are of a higher degree



Three general approaches
1) Explicit functions: 
 y=f(x), z=g(x)
 Can’t get multiple values of y for a single x  closed curves must be represented 

by multiple segments
 Not rotationally invariant
 Curves with vertical tangents is difficult (infinite slop)

2) Implicit functions:
 f(x,y,z)=0
 A simple equation is usually not enough, need several for constraints

 e.g. : a half circle

 Not easy to merge several simple sub-parts
 e.g. : when merge two curve segments, difficult to determine whether their tangent directions agree 

3) Parametric representation:
 x=x(t), y=y(t), z=z(t)
 Overcome above problems
 geometric slopes (may be infinite)  parametric tangent vectors (never infinite)
 Piecewise linear shapes  piecewise polynomial shapes



Spline
 Spline = long flexible strips of metal used by 

draftspersons to lay out the surfaces of airplanes, 
cars, and ships

 The metal splines, unless severely stressed, had 
second-order continuity

R. Bartels, J. Beatty, and B. Barsky, “An Introduction to Splines for Use in 
Computer Graphics and Geometric Modeling”, Morgan Kaufmann, 1987



Parametric Curve

Parametric Domain

Actual Shape



Parametric Cubic Curves
A curve segment defined by the cubic 

polynomial Q(t)=[x(t) y(t) z(t)]:
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An example of two joined parametric 
cubic curve segments and their 
polynomials



Continuity
 One of the fundamental concepts
 Commonly used cases:

 Consider two curves: a(u) and b(u) (u is in [0,1])
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Positional Continuity
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Parametric and General Continuity
 Cn continuity: derivatives (up to n-th) are the same 

at the joining point

 Cn parametric continuity
 Depending on parameterization, not just the 

geometry
 Same geometry may have different parametric 

representations (re-parameterization)
 Another type of continuity: geometric continuity, 

denoted as Gn
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Geometric Continuity
 G0 and G1



Geometric Continuity
 Only depend on the geometry, not the 

parameterization
 G0 : the same joint
 G1: two curve tangents at the joint align, but 

may (or may not) have the same magnitude
 Gn :  Cn after the reparameterization
 Which condition is stronger?
geometric continuity is a relaxed form of 
parametric continuity

Presenter
Presentation Notes
geometric continuity is a relaxed for of parametric continuityparametric continuity disallows many parametrizations which generate geometrically smooth curves



Defining and Merging Curve Segments

 A curve segment is defined by constraints on endpoints, and 
tangent vectors (or higher degree derivatives)

 e.g. : on each dimension, a cubic polynomial curve has four 
coefficients  four constraints will be needed to solve for 
the unknowns

 Most commonly used in computer graphics
 Lower-degree polynomials give too little flexibility in controlling the shape 

of the curve (on position + tangent interpolation)
 Higher-degree polynomials can introduce unwanted wiggles and also 

require more computation

 Three common types of curve segments:
 Hermite : defined by 2 endpoints + 2 endpoint tangent vectors
 Bezier : defined by 2 endpoints and 2 other points (that control 

the endpoint tangent vectors)
 Several kinds of splines: defined by 4 control points 



How coefficients depend on constraints

 Given a cubic curve segment, only 12 coefficients to 
determine:

 On x(t) , only 4 , uniquely determined by 4 constraints
 Suppose we want to put constraints on positional and 

normal values x(0), x(1), x’(0), and x’(1)
 We can rewrite the representation

 It becomes a weighted sum of constraints
 A generalization of straight-line approximation
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How coefficients depend on constraints

 If we know the matrix M, then given a set of new 
constraints, we know the curve immediately
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How coefficients depend on constraints

 Rewrite:

 On x(t):

a curve is a weighted sum of a column (x, or y, or z) of elements of 
the geometry matrix

 A generalization of straight-line approximation
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Cubic Hermite Curve

C(0)

C’(0)

C(1)

C’(1)
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 Hermite curve

 On each axis direction
 4 constraints = 2 end-points + 2 tangents at end-points

 Therefore:

its inverse:
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Hermite Curve

 Basis functions
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Series of Hermite Curves

 Tangent vector direction and the 
curve shape
 increasing magnitude of R1  higher 

curves (right fig.)

 Continuity between two 
connecting Hermite cubic curves:
 Same end-points
 Same tangent vectors



High-Degree polynomials
 More degrees of freedom
 Easy to formulate
 Infinitely differentiable
 Drawbacks:
 High-order
 Global control
 Expensive to compute, complex
 Undulation



Piecewise Polynomials
 Piecewise --- different polynomials for 

different parts of the curve
 Advantages --- flexible, low-degree
 Disadvantages --- how to ensure smoothness at 

the joints (continuity)



Piecewise Hermite Curves
 How to build an interactive system to satisfy 

various constraints
 C0 continuity

 C1 continuity

 G1 continuity
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Piecewise Hermite Curves



Bezier Curve

Interpolate the two end control points, 
and approximates the other two points:
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Basis Matrix for Bezier Curve
 Following the last equation:

 Therefore, we derive the Bezier basis matrix 
from the Hermit form:
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Bernstein Polynomials
 Bezier curve

 Control points and basis functions
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Review: 
An n-degree parametric curve
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a Degree-3 example:
A Cubic curve segment:

Given 4 geometric constraint vectors: we can solve all unknown coefficients
Different schemes: Hermite, Bezier…

Mathmatically equivalent, one can convert to another
Allow different constraint vectors



Cubic Hermite & Bezier Curves

 Hermit Curves:

 Bezier Curves:

33
3

23
2

23
1

33
0

)(

)1(3)(

)1(3)(

)1()(

ttB
tttB

tttB
ttB

=

−=

−=

−=

23
4

23
3

23
2

23
1

)(

2)(

32)(

132)(

tttf
ttttf

tttf
tttf

−=

+−=

+−=

+−=



Basic Properties of 
Bezier Cubic Curves

 End-point interpolation: curve passes the first and the 
last points

 The curve is a linear combination of control points and 
basis functions

 Basis functions 
Are Polynomials
Partition of unity: Basis functions sum to one
Non-negative

 Convex hull (both necessary and sufficient)
 Predictability
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Some Bezier curve examples

 n=1 : linear interpolation 
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 n=2 : linear interpolation

 {P0, P1, P2}  control polygon
 P0=C(0) and P2=C(1)
 Tangent directions at endpoints are 

parallel to P1-P0 and P2-P1
 Curve contained in triangle P0P1P2
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Some Bezier curve examples

 n=3 : cubic Bezier curve

 Control polygon (CP) approximates the curve shape, 
curve contained in this convex hull

 Interpolate endpoints
 Tangent at endpoints are parallel to P1-P0 and P2-P1
 Variation diminishing property: no straight plane 

intersects the curve more times than it intersects 
the CP (curve doesn’t wiggle more than CP)
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 n=6 : a degree-6 closed Bezier curve
 G1 continuous at C(0)=C(1)



Derivatives
 Tangent vectors are evaluated at the end-points

 Second derivatives at end-points can also be easily 
computed:
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Piecewise Bezier Curves



Piecewise Bezier Curves
 C0 continuity

 C1 continuity

 G1 continuity

 C2 continuity

 G2 continuity
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Piecewise C2 Bezier Curves
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Spline
 Spline = long flexible strips of metal used by 

draftspersons to lay out the surfaces of airplanes, 
cars, and ships

 The metal splines, unless severely stressed, had 
second-order continuity

 B-Spline
 Same basis function of Bezier Curves
 Defined on a sequential parametric segments

R. Bartels, J. Beatty, and B. Barsky, “An Introduction to 
Splines for Use in Computer Graphics and Geometric 
Modeling”, Morgan Kaufmann, 1987



B-Spline Definition

 Definitions:
 Uniform B-spline: knots are spaced at equal intervals of the 

parameter t (e.g. t3=0, ti+1-ti=1)
 Nonuniform B-spline: …
 Nonrational vs rational (later)
 B-spline: basis : splines are weighted sums of polynomial 

basis functions 



B-Spline Basis Functions
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Bezier curve is a special case of it



B-Spline Basis Functions
 Degree-1:

 Degree-2:
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B-Spline Basis Functions
 Degree-3: Quadratic example (knot vector is 

[0,1,2,3,4,5,6])

 Degree-4:
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B-Spline Basis Functions
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B-Spline Properties
 Bi,n(t) is a piecewise polynomial of degree n, and with  

Cn-1 continuity  
 Bi,n(t) has a support of length n+1
 Each curve segment is defined by n+1 control points, 

and each control point affects at most n+1 curve 
segments

 The degree of basis functions is independent of the 
number of control points

 Convex hull, local control
 Positivity, partition of unity, recursive evaluation



Uniform B-Spline
 Uniform vs Nonuniform:

 Uniform Cubic B-spline (represented as Bezier control 
points)
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Non-uniform B-Spline
 One of the most important advantage:

 Knot insertion (locally adding a control point without changing 
the curve, for feature adjustment later)
 Insert a new knot
 Add a new control point, and update two control points



NURBS
NURBS = Non Uniform Rational B-Splines
Rational Functions  ratios of two polynomials
Why:  the need to represent some analytic shapes, for example, 
conic sections (e.g., circles, ellipses, parabolas)
A non-uniform and rational extension of B-splines, 
A unified representation for polynomials, conic sections, etc.
The industry standard representation
Intuitively, rational representation adds weights to the control 
points, so that some control points are more important.
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Rational Bezier Curve
 Projecting a Bezier curve onto w=1 plane



From B-Splines to NURBS



NURBS Weights
 Weight increase “attracts” the curve towards 

the associated control point
 Weight decrease “pushes away” the curve from 

the associated control point



NURBS for Analytic Shapes
 Conic sections
 Natural quadrics
 Extruded surfaces
 Ruled surfaces
 Surfaces of revolution



NURBS Circle

]4,4,4,3,2,2,1,0,0,0[knot
1,5.0,5.0,1,5.0,5.0,1

=
=iw

gd,e,d,c,b,a,
a=g … Will be 

explained in 
the next 
class… 



NURBS Curve
 Geometric components
 Control points, parametric domain, weights, knots

 Homogeneous representation of B-splines
 Geometric meaning --- obtained from 

projection
 Properties of NURBS
 Represent standard shapes, invariant under 

perspective projection, B-spline is a special case, 
weights as extra degrees of freedom, common 
analytic shapes such as circles, clear geometric 
meaning of weights



Review
 Polynomial representation:

 Curve as 
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Or the weighted sum format with different types of basis functions:

For example, Bezier curve:



Rational Bezier Curves
 Although polynomials offer many advantages, there 

exist a number of important curve and surface types 
which cannot be represented precisely using polynomials 
(e.g. circles, ellipses, hyperbolas, cylinders, cones, 
spheres, etc.)

 Example: unit circle in the xy plane can’t be represented using 
polynomial functions
 If it has a parametric representation :

 Then x2+y2-1=0 implies:

 Equation (1) should hold for all t, which implies that all coefficients 
are zero
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Rational Bezier Curves (cont.)
 Example: unit circle in the xy plane can’t be represented using 

polynomial functions
 (cont.)
 (1)
 (2)
 (3) …
 (n)  

But this implies 0=(0+0-1)=-1
This proves a circle can’t be represented by a polynomial form.
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 Conic sections can be represented by rational functions:
 Unit circle: 

 Ellipse (major radius 2 on y-axis, and minor radius 1 on x-axis):

 Hyperbola, center at (0, 4/3), with y-axis the transverse axis:
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Rational Bezier curve
 nth-degree rational Bezier curve:

or                                               where
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 Properties:
 Nonnegativity, partition of unity, endpoints interpolation
 Bi,n(t) are a special case of the Ri,n(t)
 Convex hull property, affine transformation invariance, 

variation diminishing property
 The kth derivative at t=0 (t=1) depends on the first (last) 

k+1 control points and weights, in particular C’(0) and 
C’(1) are parallel to P1-P0 and Pn-Pn-1 respectively.



Rational Bezier curve example



Using Homogeneous Coordinates
A 2D curve example:
 Given a set of control points {Pi}, 

and weights {wi}
 Construct the weighted control 

points Qi (wixi, wiyi,wi)
 In 3D:

 Project it back onto the w=1 plane:
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Example:
Rational functions for unit circle

Where to put control 
points, and how to 
set their weights?

Suppose you know: a parametric representation of a circle is  
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The unit circle example

Look at one quadrant of the unit circle:

The quadric curve should have P0, P1, and P2 placed as shown in the right 
figure. (Why?)
For the weights, we have:

with t=0,0.5,1  w0, w1, w2 = 1,1,2
Get homogeneous coordinates
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The unit circle example
The 3D parametric curve is a parabolic arc:

Which projects onto a circular arc on the 
W=1 plane

On any given t, for example, t=1/2
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NURBS Curves
An p-degree NURBS Curve:
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Note:
Computation of a set of basis functions requires specification of a knot 
vector U and the degree k
It may yield the quotient 0/0, we define it to be zero
Bi,p(u) defined on the entire real line, but only the [u0,um] is of interest.
The interval [ui,ui+1) is called the ith knot span, and can have zero length
The computation of pth-degree functions generates a trucated
triangular table
Exercise:  Curve with                           is a generalized p-degree Bezier 
representation.

k+1 k+1



Spline Surface
A curve  vector function of one 
parameter, mapping of a straight 
line segment into Euclidean 3D space

A surface  a vector-valued 
function of two parameters, mapping 
of a region into Euclidean 3D space

Spline Surface Categories 
(classified by domain schemes):
Tensor product patches
Triangular patches
…



Tensor Product Surfaces
Basis functions: 
bivariate functions of u and v
(constructed as products of univariate basis functions)

A tensor product surface 

The (u,v) domain of this mapping is a square (rectangle)
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An example
A general parametric surface:

∑∑
= =

=
n

i

m

j
jiji

T bvgufvuS
0 0

,)()(),(

In tensor product representation: fi  ui and gj  vj, basis functions make 
the products {uivj}.

If we fix u=u0 then we get an iso-curve:



Nonrational Bezier Surfaces



Nonrational Bezier Surfaces
A bidirectional net of control points and products of the univariate
Bernstein polynomials:

For fixed u=u0: we get a Bezier curve



Properties of Nonrational Bezier Surfaces

Non-negativity.

Partition of Unity.

S(u,v) is contained in the convex hull of its control points.

Affine Transformation Invariance.

The surface interpolates the four corner control points.



NURBS Curves  Surfaces

 NURBS curves.
 Tensor product?
 Question: can we get NURBS surface this way?
 Answer: NO!
 NURBS are not tensor-product surfaces

 Can we have NURBS surface?
 YES.



NURBS Curves
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NURBS Surface
 NURBS surface definition:
 A NURBS surface of degree k in u direction and 

degree l in the v direction is:

 Geometric interpolation
 Not the tensor-product formulation.  (Compare it 

with Bezier and B-spline construction)
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NURBS Surface
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NURBS Surface
 Parametric variables: u and v
 Control points and their associated weights: 

(m+1)(n+1)
 Degrees of basis functions: (k-1) and (l-1)
 Knot sequence:

 Parametric domain:
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NURBS Surface Property



NURBS Surface Examples

Presenter
Presentation Notes
NURBS are piecewise parametric representations.The control polygon of a NURBS surface is defined by p’s and w’s. The control polygon is smoothed out by NURBS basis functions B’s. They provide high order continuity.



NURBS Surfaces
 Good for
 Mechanical, manufactured parts
 Smooth free-form surface representation

 Bad for
 Non-genus-0 surfaces
 Interactive design of free-form surfaces

Presenter
Presentation Notes
NURBS surfaces are very good for representing mechanical parts, smooth free-form surfaces. But since NURBS has strict rectangular parametric domain, they are not good to represent Non-genus-0 surfaces. The topological difficulty also make them not convenient for interactive design of free-form surface.



Why NURBS
 Support free-form curves/surfaces modeling.
 Represent standard analytic shapes precisely.
 Local support.
 Convex hull.
 Affine transformation invariant.
 Strict analytic form for evaluation (important 

in CAD/CAM/CAE).



Why NOT NURBS
 Hard to model arbitrary topology.
 Regularity of tensor-product control 

polygon poses difficulty for level of detail.

Allow T-junctions
 T-splines
(details in 
EE7000 course)



Parametric Solids
 Tricubic solid

 Bezier solid

 B-spline solid

 NURBS solid
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Free-form Deformation
 Geometric objects are embedded into a space
 The surrounding space is represented by using 

commonly-used, popular splines
 Free-form deformation of the surrounding space
 All the embedded (geometric) objects are 

deformed accordingly, the quantitative 
measurement of deformation is obtained from the 
displacement vectors of the trivariate splines that 
define the surrounding space

 Essentially, the deformation is governed by the 
trivariate, volumetric splines

 Very popular in graphics and related fields

(Will be discussed in EE7000 course.)



Free-form Deformations

(courtesy of Pauly et al.)

Presenter
Presentation Notes
Free form deformation introduced by Sederberg and Parry in 1986, has been studied extensively in the past. The basic idea of FFD is to embed the object into an initial tool space. And when the tool space is deformed by user manipulation, the underlying object is deformed as well.In Sederberg’s approach, they embed the object in a lattice of grid of some standard geometry, such as a cube or cylinder. Manipulating the nodes of the grids can cause the deformations on the space, and these deformations transform the underlying object.Coquillart extend Sederberg’s work by providing a toolkit of lattice with different sizes, resolutions, and geometries that can be positioned over the object.MacCracken perform FFD on lattices with arbitrary topology, using a subdivision algorithm to refine the lattice.Singh presented wires for interactive geometric deformation. The manipulation of wires can deform the surface of an object near the curves.Most recently Hua and Qin proposed Scalar-field FFD technique based on general flow constraints and implicit functions.So free-form deformation is independent of the object’s representations, and it can be directly applied to point samples. But of course, when we are performing FFD on the point-sampled surfaces, we need to explicitly deal with dynamic-sampling, so when the surface is stretched, we need to insert more points, or when the surface is squeezed, we need to do down-sampling.
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