Spline Representation

Xin (Shane) Li

Piecewise linear approximation

- Previous: polygonal representation (meshes) and polylines are firstdegree, piecewise linear approximations to surfaces and curves
- When the object is not piecewise linear
- To improve its approximation accuracy
\rightarrow more sample points
\rightarrow large number of coordinates to be created and stored
- Interactive manipulation is tedious
- Need a more compact and more manipulable representation
- To use functions that are of a higher degree

Three general approaches

1) Explicit functions:
$\rightarrow y=f(x), z=g(x)$

- Can't get multiple values of y for a single $x \rightarrow$ closed curves must be represented by multiple segments
- Not rotationally invariant
- Curves with vertical tangents is difficult (infinite slop)

2) Implicit functions:
$\rightarrow \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$

- A simple equation is usually not enough, need several for constraints - e.g.: a half circle
- Not easy to merge several simple sub-parts
- e.g. : when merge two curve segments, difficult to determine whether their tangent directions agree

3) Parametric representation:
$\rightarrow x=x(\mathrm{t}), \mathrm{y}=\mathrm{y}(\mathrm{t}), \mathrm{z}=\mathrm{z}(\mathrm{t})$
> Overcome above problems
$>$ geometric slopes (may be infinite) \rightarrow parametric tangent vectors (never infinite)
$>$ Piecewise linear shapes \rightarrow piecewise polynomial shapes

Spline

\square Spline = long flexible strips of metal used by draftspersons to lay out the surfaces of airplanes, cars, and ships
\square The metal splines, unless severely stressed, had second-order continuity
R. Bartels, J. Beatty, and B. Barsky, "An Introduction to Splines for Use in Computer Graphics and Geometric Modeling", Morgan Kaufmann, 1987

Parametric Curve

Parametric Domain

Parametric Cubic Curves

A curve segment defined by the cubic polynomial $Q(t)=[x(t) y(t) z(t)]:$

$$
\begin{aligned}
& x(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x} \\
& y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y} \\
& z(t)=a_{z} t^{3}+b_{z} t^{2}+c_{z} t+d_{z} \\
& 0 \leq t \leq 1
\end{aligned}
$$

A more compact writing: $\quad T=\left[\begin{array}{lll}t^{3} & t^{2} & t^{1}\end{array}\right]$;

$$
\begin{aligned}
& C=\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z} \\
d_{x} & d_{y} & d_{z}
\end{array}\right] ; \\
& Q(t)=\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]=T \cdot C
\end{aligned}
$$

An example of two joined parametric cubic curve segments and their polynomials

Continuity

- One of the fundamental concepts
- Commonly used cases:

$$
C^{0}, C^{1}, C^{2}
$$

- Consider two curves: $a(u)$ and $b(u)(u$ is in $[0,1])$

Positional Continuity

$\mathbf{a}(1)=\mathbf{b}(0)$

Derivative Continuity

$$
\begin{aligned}
& \mathbf{a}(1)=\mathbf{b}(0) \\
& \mathbf{a}^{\prime}(1)=\mathbf{b}^{\prime}(0)
\end{aligned}
$$

Parametric and General Continuity

- C^{n} continuity: derivatives (up to n-th) are the same at the joining point

$$
\begin{aligned}
& \mathbf{a}^{(i)}(1)=\mathbf{b}^{(i)}(0) \\
& i=0,1,2, \ldots, n
\end{aligned}
$$

- $\mathrm{C}^{\mathrm{n}} \rightarrow$ parametric continuity
- Depending on parameterization, not just the geometry
- Same geometry may have different parametric representations (re-parameterization)
- Another type of continuity: geometric continuity, denoted as G^{n}

Geometric Continuity

- G^{0} and G^{1}

Geometric Continuity

- Only depend on the geometry, not the parameterization
- G^{0} : the same joint
- G^{1} : two curve tangents at the joint align, but may (or may not) have the same magnitude
- $\mathrm{G}^{\mathrm{n}}: \rightarrow \mathrm{C}^{\mathrm{n}}$ after the reparameterization
- Which condition is stronger?
>geometric continuity is a relaxed form of parametric continuity

Defining and Merging Curve Segments

- A curve segment is defined by constraints on endpoints, and tangent vectors (or higher degree derivatives)
- e.g. : on each dimension, a cubic polynomial curve has four coefficients \& four constraints will be needed to solve for the unknowns
\rightarrow Most commonly used in computer graphics
\rightarrow Lower-degree polynomials give too little flexibility in controlling the shape of the curve (on position + tangent interpolation)
\rightarrow Higher-degree polynomials can introduce unwanted wiggles and also require more computation
- Three common types of curve segments:
- Hermite : defined by 2 endpoints +2 endpoint tangent vectors
- Bezier : defined by 2 endpoints and 2 other points (that control the endpoint tangent vectors)
- Several kinds of splines: defined by 4 control points

How coefficients depend on constraints

- Given a cubic curve segment, only 12 coefficients to determine:
- On $x(t)$, only 4 , uniquely determined by 4 constraints
- Suppose we want to put constraints on positional and normal values $x(0), x(1), x^{\prime}(0)$, and $x^{\prime}(1)$
- We can rewrite the representation
$x(t)=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]\left[\begin{array}{l}a_{x} \\ b_{x} \\ c_{x} \\ d_{x}\end{array}\right]=\left[\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right]\left[\begin{array}{llll}m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44}\end{array}\right]\left[\begin{array}{c}x(0) \\ x(1) \\ x^{\prime}(0) \\ x^{\prime}(1)\end{array}\right]=T \cdot M \cdot G_{x}$
- It becomes a weighted sum of constraints
- A generalization of straight-line approximation

How coefficients depend on constraints

- If we know the matrix M, then given a set of new constraints, we know the curve immediately

$$
\begin{aligned}
& x(t)=T \cdot\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(0) \\
x(1) \\
x^{\prime}(0) \\
x^{\prime}(1)
\end{array}\right] \\
& y(t)=T \cdot M^{H} \cdot\left[\begin{array}{cccc}
y(0) & y(1) & y^{\prime}(0) & y^{\prime}(1)
\end{array}\right]^{T} \\
& z(t)=T \cdot M^{H} \cdot\left[\begin{array}{cccc}
z(0) & z(1) & z^{\prime}(0) & z^{\prime}(1)
\end{array}\right]^{T}
\end{aligned}
$$

How coefficients depend on constraints

- Rewrite:

$$
\begin{aligned}
& T=\left[\begin{array}{llll}
t^{3} & t^{2} & t^{1} & 1
\end{array}\right] ; C=\left[\begin{array}{ccc}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z} \\
d_{x} & d_{y} & d_{z}
\end{array}\right] ; \\
& Q(t)=\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]=T \cdot C \\
& =T \cdot M \cdot G=\left[\begin{array}{llll}
t^{3} & t^{2} & t^{1} & 1
\end{array}\right]\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right]\left[\begin{array}{l}
G_{1} \\
G_{2} \\
G_{3} \\
G_{4}
\end{array}\right] \quad \rightarrow \begin{array}{l}
\text { vectors } \\
\text { (constraints, } \\
\text { e.g. end points, } \\
\text { tangent) }
\end{array}
\end{aligned}
$$

- On $x(\dagger)$:

$$
x(t)=T \cdot M \cdot G_{x}=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right]\left[\begin{array}{c}
g_{x 1} \\
\boldsymbol{g}_{x 2} \\
\boldsymbol{g}_{x 3} \\
\boldsymbol{g}_{\times 4}
\end{array}\right]
$$

\rightarrow a curve is a weighted sum of a column (x, or y, or z) of elements of the geometry matrix

- A generalization of straight-line approximation

Cubic Hermite Curve

Cubic Hermite Curve

- Hermite curve

$$
\mathbf{c}(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

- On each axis direction
- 4 constraints $=2$ end-points +2 tangents at end-points
- Therefore: $\left[\begin{array}{c}x(0) \\ x(1) \\ x(1) \\ x^{\prime}(1)\end{array}\right]=G_{x}^{H}=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 3 & 2 & 1 & 0\end{array}\right] \cdot M^{H} \cdot G_{x}^{H}$
$\mathrm{M}^{\mathrm{H}}=$ its inverse:

$$
\begin{aligned}
& x(t)=T \cdot\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(0) \\
x(1) \\
x^{\prime}(0) \\
x^{\prime}(1)
\end{array}\right] \\
& y(t)=T \cdot M^{H} \cdot\left[\begin{array}{llll}
y(0) & y(1) & y^{\prime}(0) & y^{\prime}(1)
\end{array}\right]^{T} \\
& z(t)=T \cdot M^{H} \cdot\left[\begin{array}{llll}
z(0) & z(1) & z^{\prime}(0) & z^{\prime}(1)
\end{array}\right]^{T}
\end{aligned}
$$

Hermite Curve

$$
Q(t)=T \cdot M^{H} \cdot G^{H}=B^{H} \cdot G^{H}
$$

- Basis functions

$$
\begin{aligned}
& f_{1}(t)=2 t^{3}-3 t^{2}+1 \\
& f_{2}(t)=-2 t^{3}+3 t^{2} \\
& f_{3}(t)=t^{3}-2 t^{2}+t \\
& f_{4}(t)=t^{3}-t^{2}
\end{aligned}
$$

Series of Hermite Curves

- Tangent vector direction and the curve shape
- increasing magnitude of $\mathrm{R}_{1} \rightarrow$ higher curves (right fig.)

- Continuity between two connecting Hermite cubic curves:
- Same end-points
- Same tangent vectors

High-Degree polynomials

- More degrees of freedom
- Easy to formulate
- Infinitely differentiable
- Drawbacks:
- High-order
- Global control
- Expensive to compute, complex
- Undulation

Piecewise Polynomials

- Piecewise --- different polynomials for different parts of the curve
- Advantages --- flexible, low-degree
- Disadvantages --- how to ensure smoothness at the joints (continuity)

Piecewise Hermite Curves

- How to build an interactive system to satisfy various constraints
- CO continuity

$$
\mathbf{a}(1)=\mathbf{b}(0)
$$

- C1 continuity

$$
\begin{aligned}
& \mathbf{a}(1)=\mathbf{b}(0) \\
& \mathbf{a}^{\prime}(1)=\mathbf{b}^{\prime}(0)
\end{aligned}
$$

- G1 continuity

$$
\begin{aligned}
& \mathbf{a}(1)=\mathbf{b}(0) \\
& \mathbf{a}^{\prime}(1)=\alpha \mathbf{b}^{\prime}(0)
\end{aligned}
$$

Piecewise Hermite Curves

Bezier Curve

Interpolate the two end control points, and approximates the other two points:

Basis Matrix for Bezier Curve

- Following the last equation:

$$
\left[\begin{array}{l}
Q(0) \\
Q(1) \\
Q^{\prime}(0) \\
Q^{\prime}(1)
\end{array}\right]=G_{x}^{H}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3} \\
P_{4}
\end{array}\right]=M^{H B} \cdot G^{B} \text { vector }
$$

- Therefore, we derive the Bezier basis matrix from the Hermit form:
$G^{H}=M^{H B} \cdot G^{B} ; M^{B}=M^{H} \cdot M^{H B} ;$ $Q(t)=T \cdot M^{H} \cdot G^{H}=T \cdot M^{H}\left(M^{H B} \cdot G^{B}\right)=T \cdot M^{B} \cdot G^{B} ;$
$M^{B}=\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right] \square T \cdot M^{B}=\left[\begin{array}{c}B_{0}^{3}(t)=(1-t)^{3} \\ B_{1}^{3}(t)=3 t(1-t)^{2} \\ B_{2}^{3}(t)=3 t^{2}(1-t) \\ B_{3}^{3}(t)=t^{3}\end{array}\right]$

Bernstein Polynomials

- Bezier curve

$$
\mathbf{c}(t)=\sum_{i=0}^{3} \mathbf{p}_{i} B_{i}^{3}(t)
$$

- Control points and basis functions

$$
\begin{aligned}
& B_{0}^{3}(t)=(1-t)^{3} \\
& B_{1}^{3}(t)=3 t(1-t)^{2} \\
& B_{2}^{3}(t)=3 t^{2}(1-t) \\
& B_{3}^{3}(t)=t^{3}
\end{aligned}
$$

Review:

An n-degree parametric curve

$$
\begin{aligned}
& T=\left[\begin{array}{llll}
t^{n} & \ldots & t^{1} & t^{0}
\end{array}\right] ; \\
& C=\left[\begin{array}{ccc}
c_{n}^{x} & c_{n}^{y} & c_{n}^{z} \\
c_{n-1}^{x} & c_{n-1}^{y} & c_{n-1}^{z} \\
\ldots & \ldots & \cdots \\
c_{0}^{x} & c_{0}^{y} & c_{0}^{z}
\end{array}\right] ; \\
& Q(t)=\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]=T \cdot C=\sum_{i=0}^{n} \vec{c}_{i} i^{i} \\
& \\
& \\
& \\
& \quad \begin{array}{l}
\text { a Degree-3 example: }
\end{array}
\end{aligned}
$$

Given 4 geometric constraint vectors: we can solve all unknown coefficients Different schemes: Hermite, Bezier...
>Mathmatically equivalent, one can convert to another
>Allow different constraint vectors

Cubic Hermite \& Bezier Curves

- Hermit Curves:

$$
\begin{aligned}
& f_{1}(t)=2 t^{3}-3 t^{2}+1 \\
& f_{2}(t)=-2 t^{3}+3 t^{2} \\
& f_{3}(t)=t^{3}-2 t^{2}+t \\
& f_{4}(t)=t^{3}-t^{2}
\end{aligned}
$$

- Bezier Curves:

$$
\begin{aligned}
& B_{0}^{3}(t)=(1-t)^{3} \\
& B_{1}^{3}(t)=3 t(1-t)^{2} \\
& B_{2}^{3}(t)=3 t^{2}(1-t) \\
& B_{3}^{3}(t)=t^{3}
\end{aligned}
$$

Basic Properties of Bezier Cubic Curves

$$
B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i} ; C(t)=\sum_{i=0}^{i=m} B_{i}^{n}(t) P_{i}
$$

End-point interpolation: curve passes the first and the last points

- The curve is a linear combination of control points and basis functions
\square Basis functions
- Are Polynomials

Partition of unity: Basis functions sum to one

- Non-negative
- Convex hull (both necessary and sufficient)
\square Predictability

Some Bezier curve examples

$$
B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i} ; C(t)=\sum_{i=0}^{i=m} B_{i}^{n}(t) P_{i}
$$

$\square n=1$: linear interpolation

$$
B_{0}^{1}(t)=1-t ; B_{1}^{1}(t)=t: C(t)=(1-t) P_{0}+t P_{1}
$$

$\square n=2$: linear interpolation

$$
\mathbf{P}_{0}=\mathbf{C}(0)
$$

$C(t)=(1-t)^{2} P_{0}+2 t(1-t) P_{1}+t^{2} P_{2}$
$\square\left\{P_{0}, P_{1}, P_{2}\right\} \rightarrow$ control polygon

- $P_{0}=C(0)$ and $P_{2}=C(1)$
- Tangent directions at endpoints are parallel to $P_{1}-P_{0}$ and $P_{2}-P_{1}$
\square Curve contained in triangle $P_{0} P_{1} P_{2}$

Some Bezier curve examples

$$
B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i} ; C(t)=\sum_{i=0}^{i=m} B_{i}^{n}(t) P_{i}
$$

- $\mathrm{n}=3$: cubic Bezier curve
$C(t)=(1-t)^{3} P_{0}+3 t(1-t)^{2} P_{1}+3 t^{2}(1-t) P_{2}+t^{3} P_{3}$
- Control polygon (CP) approximates the curve shape, curve contained in this convex hull
- Interpolate endpoints
- Tangent at endpoints are parallel to $P_{1}-P_{0}$ and $P_{2}-P_{1}$
\square Variation diminishing property: no straight plane intersects the curve more times than it intersects the CP (curve doesn't wiggle more than CP)

$\square \mathrm{n}=6$: a degree-6 closed Bezier curve
- $G 1$ continuous at $C(0)=C(1)$

Derivatives

- Tangent vectors are evaluated at the end-points

$$
\mathbf{c}^{\prime}(0)=3\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) ; \mathbf{c}^{\prime}(1)=\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)
$$

- Second derivatives at end-points can also be easily computed:

$$
\begin{aligned}
& \mathbf{c}^{(2)}(0)=2 \times 3\left(\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)-\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)\right)=6\left(\mathbf{p}_{2}-2 \mathbf{p}_{1}+\mathbf{p}_{0}\right) \\
& \mathbf{c}^{(2)}(1)=2 \times 3\left(\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)-\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)\right)=6\left(\mathbf{p}_{3}-2 \mathbf{p}_{2}+\mathbf{p}_{1}\right)
\end{aligned}
$$

Piecewise Bezier Curves

Piecewise Bezier Curves

- CO continuity

$$
\mathbf{p}_{3}=\mathbf{q}_{0}
$$

- C1 continuity

$$
\left\{\begin{array}{l}
\mathbf{p}_{3}=\mathbf{q}_{0} \\
\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)=\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right)
\end{array}\right.
$$

- G1 continuity

$$
\left\{\begin{array}{l}
\mathbf{p}_{3}=\mathbf{q}_{0} \\
\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)=\alpha\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right)
\end{array}\right.
$$

- C2 continuity

$$
\left\{\begin{array}{l}
\mathbf{p}_{3}=\mathbf{q}_{0} \\
\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)=\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{p}_{3}-2 \mathbf{p}_{2}+\mathbf{p}_{1}=\mathbf{q}_{2}-2 \mathbf{q}_{1}+\mathbf{q}_{0}
\end{array}\right.
$$

- G2 continuity

Piecewise C2 Bezier Curves

Spline

\square Spline = long flexible strips of metal used by draftspersons to lay out the surfaces of airplanes, cars, and ships
\square The metal splines, unless severely stressed, had second-order continuity
\square B-Spline

- Same basis function of Bezier Curves
\square Defined on a sequential parametric segments

$$
\mathbf{S}(t)=\sum_{i=0}^{m-n} \mathbf{P}_{i} b_{i, n}(t), t \in\left[t_{n-1}, t_{m-n}\right]
$$

R. Bartels, J. Beatty, and B. Barsky, "An Introduction to Splines for Use in Computer Graphics and Geometric Modeling", Morgan Kaufmann, 1987

B-Spline Definition

$x(r)$
Uniform B-spline: knots are spaced at equal intervals of the parameter t (e.g. $t_{3}=0, t_{i+1}-t_{i}=1$)
\square Nonuniform B-spline:
\square Nonrational vs rational (later)
\square B-spline: \rightarrow basis : splines are weighted sums of polynomial basis functions

B-Spline Basis Functions

$$
\begin{aligned}
& B_{i, 1}(t)= \begin{cases}1 & t_{i}<=t<t_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& B_{i, k}(t)=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} B_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} B_{i+1, k-1}(t)
\end{aligned}
$$

Bezier curve is a special case of it

B-Spline Basis Functions

- Degree-1:

$$
B_{0,1}(t)=\left\{\begin{array}{lc}
1 & t \in[0,1] \\
0 & 0 / w
\end{array}\right.
$$

- Degree-2:

$$
\begin{aligned}
B_{\mathrm{O}, 2}(t) & =\left\{\begin{array}{cl}
t & t \in[0,1] \\
2-t & t \in[1,2]
\end{array}\right. \\
B_{1,2}(t) & =\left\{\begin{array}{cl}
t-1 & t \in[1,2] \\
3-t & t \in[2,3]
\end{array}\right. \\
B_{2,2}(t) & =\left\{\begin{array}{cl}
t-2 & t \in[2,3] \\
4-t & t \in[3,4]
\end{array}\right.
\end{aligned}
$$

B-Spline Basis Functions

- Degree-3: Quadratic example (knot vector is [0,1,2,3,4,5,6])

$$
B_{0,3}(t)=\left\{\begin{array}{cc}
\frac{1}{2} t^{2}, & 0<=t<1 \\
\frac{1}{2} t(2-t)+\frac{1}{2}(t-1)(3-t), & 1<=t<2 \\
\frac{1}{2}(3-t)^{2}, & 2<=t<3
\end{array}\right.
$$

$B_{1,3}(t)=\left\{\begin{array}{cc}\frac{1}{2}(t-1)^{2}, & 1<=t<2 \\ \frac{1}{2}(t-1)(3-t)+\frac{1}{2}(t-2)(4-t), & 2<=t<3 \\ \frac{1}{2}(4-t)^{2}, & 3<=t<4\end{array}\right.$
$\boldsymbol{B}_{2,3}(t)=\ldots .$.
$B_{3,3}(t)=\ldots \ldots$.

- Degree-4:

B-Spline Basis Functions

$$
\begin{array}{cccccccc}
B_{0,1} & B_{1,1} & B_{2,1} & B_{3,1} & B_{4,1} & B_{5,1} & B_{6,1} \\
B_{0,2} & B_{1,2} & B_{2,2} & B_{3,2} & B_{4,2} & B_{5,2}
\end{array}
$$

B-Spline Properties

- $B_{i, n}(t)$ is a piecewise polynomial of degree n, and with C^{n-1} continuity
- $B_{i, n}(t)$ has a support of length $n+1$
- Each curve segment is defined by $n+1$ control points, and each control point affects at most $n+1$ curve segments
- The degree of basis functions is independent of the number of control points
- Convex hull, local control
- Positivity, partition of unity, recursive evaluation

Uniform B-Spline

- Uniform vs Nonuniform:

- Uniform Cubic B-spline (represented as Bezier control points)

$$
\left[\begin{array}{l}
\mathbf{v}_{0} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{llll}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2} \\
\mathbf{p}_{i+3}
\end{array}\right]
$$

Non-uniform B-Spline

- One of the most important advantage:
- Knot insertion (locally adding a control point without changing the curve, for feature adjustment later)
- Insert a new knot
- Add a new control point, and update two control points

- P_{1}

$$
P_{3}
$$

Afftect by points in $\left[P_{3}, P_{4}\right]$
P_{5}

NURBS

- NURBS $=$ Non Uniform Rational B-Splines
\square Rational Functions \rightarrow ratios of two polynomials
QWhy: the need to represent some analytic shapes, for example, conic sections (e.g., circles, ellipses, parabolas)
\rightarrow A non-uniform and rational extension of B -splines,
\rightarrow A unified representation for polynomials, conic sections, etc.
\rightarrow The industry standard representation
OIntuitively, rational representation adds weights to the control points, so that some control points are more important.

B-Spline $\quad \square \mathbf{c}(u)=\sum_{i=0}^{n}\left[\begin{array}{c}\mathbf{p}_{i, x} w_{i} \\ \mathbf{p}_{i, y} w_{i} \\ \mathbf{p}_{i, z} w_{i} \\ w_{i}\end{array}\right] \boldsymbol{B}_{i, k}(u)$
NURBS $\quad \square \mathbf{C}(u)=\frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} B_{i, k}(u)}{\sum_{i=0}^{n} w_{i} B_{i, k}(u)}$

Rational Bezier Curve

- Projecting a Bezier curve onto w=1 plane

From B-Splines to NURBS

NURBS Weights

- Weight increase "attracts" the curve towards the associated control point
- Weight decrease "pushes away" the curve from the associated control point

NURBS for Analytic Shapes

- Conic sections
- Natural quadrics
- Extruded surfaces
- Ruled surfaces
- Surfaces of revolution

NURBS Circle

... Will be explained in the next class...

NURBS Curve

- Geometric components
- Control points, parametric domain, weights, knots
- Homogeneous representation of B-splines
- Geometric meaning --- obtained from projection
- Properties of NURBS
- Represent standard shapes, invariant under perspective projection, B-spline is a special case, weights as extra degrees of freedom, common analytic shapes such as circles, clear geometric meaning of weights

Review

- Polynomial representation:
- Curve as

$$
\begin{aligned}
& T=\left[\begin{array}{llll}
t^{n} & \ldots & t^{1} & 1
\end{array}\right] ; \\
& x(t)=a_{0}+a_{1} t+\ldots+a_{n} t^{n} \\
& y(t)=b_{0}+b_{1} t+\ldots+b_{n} t^{n} \\
& z(t)=c_{0}+c_{1} t+\ldots+c_{n} t^{n} \\
& C=\left[\begin{array}{ccc}
c_{n}^{x} & c_{n}^{y} & c_{n}^{z} \\
c_{n-1}^{x} & c_{n-1}^{y} & c_{n-1}^{z} \\
\ldots & \ldots & \ldots \\
c_{0}^{x} & c_{0}^{y} & c_{0}^{z}
\end{array}\right] ; \\
& Q(t)=\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]=T \cdot C=\sum_{i=0}^{n} \vec{c}_{i} t^{i}
\end{aligned}
$$

Or the weighted sum format with different types of basis functions:
For example, Bezier curve:

$$
\begin{aligned}
& B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i} ; \\
& C(t)=\sum_{i=0}^{i=n} B_{i}^{n}(t) P_{i}
\end{aligned}
$$

Rational Bezier Curves

- Although polynomials offer many advantages, there exist a number of important curve and surface types which cannot be represented precisely using polynomials (e.g. circles, ellipses, hyperbolas, cylinders, cones, spheres, etc.)
- Example: unit circle in the xy plane can't be represented using polynomial functions
- If it has a parametric representation: $x(t)=a_{0}+a_{1} t+\ldots+a_{n} t^{n}$
- Then $x^{2}+y^{2}-1=0$ implies:

$$
y(t)=b_{0}+b_{1} t+\ldots+b_{n} t^{n}
$$

$$
\begin{align*}
& 0=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{n}\right)^{2}+\left(b_{0}+b_{1} t+\ldots+b_{n} t^{n}\right)^{2}-1 \\
& =\left(a_{0}^{2}+b_{0}^{2}-1\right)+2\left(a_{0} a_{1}+b_{0} b_{1}\right) t+\left(a_{1}^{2}+2 a_{0} a_{2}+b_{1}^{2}+2 b_{0} b_{2}\right) t^{2} \tag{1}\\
& +\ldots+2\left(a_{n} a_{n-1}+b_{n} b_{n-1}\right) t^{2 n}-1+\left(a_{n}^{2}+b_{n}^{2}\right) t^{2 n}
\end{align*}
$$

- Equation (1) should hold for all t, which implies that all coefficients are zero

Rational Bezier Curves (cont.)

- Example: unit circle in the xy plane can't be represented using polynomial functions

$$
\begin{aligned}
& 0 \equiv\left(a_{0}+a_{1} t+\ldots+a_{n} t^{n}\right)^{2}+\left(b_{0}+b_{1} t+\ldots+b_{n} t^{n}\right)^{2}-1 \\
& =\left(a_{0}{ }^{2}+b_{0}{ }^{2}-1\right)+2\left(a_{0} a_{1}+b_{0} b_{1}\right) t+\left(a_{1}{ }^{2}+2 a_{0} a_{2}+b_{1}{ }^{2}+2 b_{0} b_{2}\right) t^{2} \\
& +\ldots+2\left(a_{n} a_{n-1}+b_{n} b_{n-1}\right) t^{2 n}-1+\left(a_{n}{ }^{2}+b_{n}{ }^{2}\right) t^{2 n}
\end{aligned}
$$

- (1) $a_{n}{ }^{2}+b_{n}{ }^{2}=0 \Rightarrow a_{n}=b_{n}=0$
- (2) $a_{n-1}{ }^{2}+2 a_{n-2} a_{n}+b_{n-1}{ }^{2}+2 b_{n-2} b_{n}=0 \Rightarrow a_{n-1}=b_{n-1}=0$
- (3) ...
- (n) $a_{1}^{2}+2 a_{0} a_{2}+b_{1}^{2}+2 b_{0} b_{2}=0 \Rightarrow a_{0}=b_{0}=0$

But this implies $0=(0+0-1)=-1$
This proves a circle can't be represented by a polynomial form.

- Conic sections can be represented by rational functions:
- Unit circle:

$$
x(t)=\frac{1-t^{2}}{1+t^{2}} ; y(t)=\frac{2 t}{1+t^{2}}
$$

- Ellipse (major radius 2 on y-axis, and minor radius 1 on x-axis): $x(t)=\frac{1-t^{2}}{1+t^{2}} ; y(t)=\frac{4 t}{1+t^{2}}$
- Hyperbola, center at ($0,4 / 3$), with y-axis the transverse axis:

$$
x(t)=\frac{-1+2 t}{1+2 t-2 t^{2}} ; y(t)=\frac{4 t(1-t)}{1+2 t-2 t^{2}}
$$

Rational Bezier curve

- nth-degree rational Bezier curve:

$$
C(t)=\frac{\sum_{i=0}^{n} B_{i, n}(t) w_{i} P_{i}}{\sum_{i=0}^{n} B_{i, n}(t) w_{i}}, 0 \leq t \leq 1
$$

or $C(t)=\sum_{i=0}^{n} R_{i, n}(t) P_{i}, 0 \leq t \leq 1 \quad$ where $\quad R_{i, n}(t)=\frac{B_{i, n}(t) w_{i}}{\sum_{i=0}^{n} B_{i, n}(t) w_{i}}, 0 \leq t \leq 1$

- Properties:
- Nonnegativity, partition of unity, endpoints interpolation
- $\mathrm{B}_{\mathrm{i}, \mathrm{n}}(\mathrm{t})$ are a special case of the $\mathrm{R}_{\mathrm{i}, \mathrm{n}}(\mathrm{t})$
- Convex hull property, affine transformation invariance, variation diminishing property
- The $\mathrm{k}^{\text {th }}$ derivative at $\mathrm{t}=0(\mathrm{t}=1)$ depends on the first (last) $\mathrm{k}+1$ control points and weights, in particular C'(0) and $C^{\prime}(1)$ are parallel to $P_{1}-\mathrm{P}_{0}$ and $\mathrm{P}_{\mathrm{n}}-\mathrm{P}_{\mathrm{n}-1}$ respectively.

Rational Bezier curve example

(a) Basis functions;

(b) Bézier curve.

Using Homogeneous Coordinates

A 2D curve example:

- Given a set of control points $\left\{\mathrm{P}_{\mathrm{i}}\right\}$, and weights $\left\{w_{i}\right\}$
- Construct the weighted control points $Q_{i}\left(w_{i} x_{i}, w_{i} y_{i}, w_{i}\right)$
- In 3D:

$$
\begin{aligned}
& x^{H}(t)=\sum_{i=0}^{n} B_{i, n}(t) w_{i} x_{i} \\
& y^{H}(t)=\sum_{i=0}^{n} B_{i, n}(t) w_{i} y_{i} \\
& w(t)=\sum_{i=0}^{n} B_{i, n}(t) w_{i}
\end{aligned}
$$

- Project it back onto the $w=1$ plane:

$$
C(t)=\frac{\sum_{i=0}^{n} B_{i, n}(t) w_{i} P_{i}}{\sum_{i=0}^{n} B_{i, n}(t) w_{i}}
$$

Example:
 Rational functions for unit circle

Where to put control points, and how to set their weights?

Suppose you know: a parametric representation of a circle is

$$
x(t)=\frac{1-t^{2}}{1+t^{2}} ; y(t)=\frac{2 t}{1+t^{2}}
$$

The unit circle example

Look at one quadrant of the unit circle: $\left(x(t)=\frac{1-t^{2}}{1+t^{2}}, y(t)=\frac{2 t}{1+t^{2}}\right), 0 \leq t \leq 1$
The quadric curve should have $\mathrm{P}_{0}, \mathrm{P}_{1}$, and P_{2} placed as shown in the right figure. (Why?)

- For the weights, we have: $w(t)=1+t^{2}=\sum_{i=0}^{n} B_{i, 2}(t) w_{i}=(1-t)^{2} w_{0}+2 t(1-t) w_{1}+t^{2} w_{2}$ with $\mathrm{t}=0,0.5,1 \rightarrow \mathrm{w}_{0}, \mathrm{w}_{1}, \mathrm{w}_{2}=1,1,2$
QGet homogeneous coordinates

$$
\begin{aligned}
& P_{0}=(1,0) \quad Q_{0}=(1,0,1) \\
& P_{1}=(1,1) \quad \Rightarrow \quad Q_{1}=(1,1,1) \\
& P_{2}=(0,1) \quad Q_{2}=(0,2,1)
\end{aligned}
$$

The unit circle example

The 3D parametric curve is a parabolic arc:

$$
C^{H}(t)=\sum_{i=0}^{n} B_{i, 2}(t) Q_{i}
$$

Which projects onto a circular arc on the $\mathrm{W}=1$ plane

On any given t, for example, $t=1 / 2$

$$
\begin{aligned}
& C^{H}\left(\frac{1}{2}\right)=\sum_{i=0}^{2} B_{i, 2}\left(\frac{1}{2}\right) Q_{i} \\
& =\left(1-\left(\frac{1}{2}\right)\right)^{2}(1,0,1)+2\left(1-\left(\frac{1}{2}\right)\right)\left(\frac{1}{2}\right)(1,1,1)+\left(\frac{1}{2}\right)^{2}(0,2,2) \Rightarrow C\left(\frac{1}{2}\right)=(3 / 5,4 / 5) \\
& =\left(\frac{3}{4}, 1, \frac{5}{4}\right)
\end{aligned}
$$

NURBS Curves

An p-degree NURBS Curve:
$\begin{aligned} \mathbf{C}(u)=\frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} B_{i, k}(u)}{\sum_{i=0}^{n} w_{i} B_{i, k}(u)} \quad \text { where }\end{aligned} \quad \boldsymbol{B}_{i, 0}(u)=\left\{\begin{array}{ll}1 & u_{i} \leq u<u_{i+1} \\ 0 & o / w\end{array}\right\}$

Note:
-Computation of a set of basis functions requires specification of a knot vector U and the degree k
$\square I t$ may yield the quotient $0 / 0$, we define it to be zero
$\square B_{i, p}(u)$ defined on the entire real line, but only the $\left[u_{0}, u_{m}\right]$ is of interest.
\square The interval $\left[\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}\right)$ is called the ith knot span, and can have zero length
\square The computation of pth-degree functions generates a trucated
triangular table
Exercise: Curve with $U=\{\underbrace{0, \ldots, 0}_{\mathrm{k}+1} \underbrace{1, \ldots, 1}_{\mathrm{k}+1}\}$ is a generalized p-degree Bezier representation.

Spline Surface

A curve \rightarrow vector function of one parameter, mapping of a straight line segment into Euclidean 3D space

A surface \rightarrow a vector-valued function of two parameters, mapping
 of a region into Euclidean 3D space

Spline Surface Categories (classified by domain schemes):
aTensor product patches
-Triangular patches
口...

Tensor Product Surfaces

Basis functions:
bivariate functions of u and v
(constructed as products of univariate basis functions)
A tensor product surface $S^{T}(u, v)=(x(u, v), y(u, v), z(u, v))=\sum_{i=0}^{n} \sum_{j=0}^{m} f_{i}(u) g_{j}(v) b_{i, j} ;$

$$
\text { where }\left\{\begin{array}{c}
b_{i, j}=\left(x_{i, j}, y_{i, j}, z_{i, j}\right) \\
0 \leq u, v \leq 1
\end{array}\right.
$$

The (u, v) domain of this mapping is a square (rectangle)

$$
\begin{aligned}
& S^{T}(u, v)=\left[f_{i}(u)\right]^{T}\left[b_{i, j}\left[g_{j}(u)\right]\right. \\
& \downarrow \\
& (\mathrm{n}+1)^{\star}(\mathrm{m}+1) \text { matrix of 3D points }
\end{aligned}
$$

An example

$$
S^{T}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} f_{i}(u) g_{j}(v) b_{i, j}
$$

A general parametric surface:

$$
\mathbf{S}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{a}_{i, j} u^{i} v^{j}=\left[u^{i}\right]^{\boldsymbol{T}}\left[\mathbf{a}_{i, j}\right]\left[v^{j}\right] \quad\left\{\begin{array}{l}
\mathbf{a}_{i, j}=\left(x_{i, j}, y_{i, j}, z_{i, j}\right) \\
0 \leq u, v \leq 1
\end{array}\right.
$$

In tensor product representation: $\mathrm{f}^{\mathrm{i}} \rightarrow \mathrm{u}_{\mathrm{i}}$ and $\mathrm{g}_{\mathrm{j}} \rightarrow \mathrm{v}^{\mathrm{j}}$, basis functions make the products \{uivi\}.

If we fix $u=u_{0}$ then we get an iso-curve:

$$
\begin{gathered}
\mathbf{C}_{u_{0}}(v)=\mathbf{S}\left(u_{0}, v\right)=\sum_{j=0}^{m}\left(\sum_{i=0}^{n} \mathbf{a}_{i, j} u_{0}^{i}\right) v^{j}=\sum_{j=0}^{m} \mathbf{b}_{j}\left(u_{0}\right) v^{j} \\
\mathbf{b}_{j}\left(u_{0}\right)=\sum_{i=0}^{n} \mathbf{a}_{i, j} u_{0}^{i}
\end{gathered}
$$

Nonrational Bezier Surfaces

Nonrational Bezier Surfaces

A bidirectional net of control points and products of the univariate Bernstein polynomials:

$$
\mathbf{S}(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i, n}(u) B_{j, m}(v) \mathbf{P}_{i, j} \quad 0 \leq u, v \leq 1
$$

For fixed $u=u_{0}$: we get a Bezier curve

$$
\begin{aligned}
\mathbf{C}_{u_{0}}(v)=\mathbf{S}\left(u_{0}, v\right) & =\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i, n}\left(u_{0}\right) B_{j, m}(v) \mathbf{P}_{i, j} \\
& =\sum_{j=0}^{m} B_{j, m}(v)\left(\sum_{i=0}^{n} B_{i, n}\left(u_{0}\right) \mathbf{P}_{i, j}\right) \\
& =\sum_{j=0}^{m} B_{j, m}(v) \mathbf{Q}_{j}\left(u_{0}\right) \\
\mathbf{Q}_{j}\left(u_{0}\right)= & \sum_{i=0}^{n} B_{i, n}\left(u_{0}\right) \mathbf{P}_{i, j} \quad j=0, \ldots, m
\end{aligned}
$$

Properties of Nonrational Bezier Surfaces

Non-negativity.

$$
B_{i, n}(u) B_{j, m}(v) \geq 0 \text { for all } i, j, u, v
$$

\square Partition of Unity.

$$
\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i, n}(u) B_{j, m}(v)=1 \text { for all } u \text { and } v
$$

$\square S(u, v)$ is contained in the convex hull of its control points.
\square Affine Transformation Invariance.

The surface interpolates the four corner control points.

NURBS Curves \rightarrow Surfaces

- NURBS curves.
- Tensor product?
- Question: can we get NURBS surface this way?
- Answer: NO!
\rightarrow NURBS are not tensor-product surfaces
- Can we have NURBS surface?
- YES.

NURBS Curves

$$
c(u)=\frac{\sum_{i=1}^{n} p_{i} w_{i} B_{i, k}(u)}{\sum_{i=1}^{n} w_{i} B_{i, k}(u)}
$$

$$
\left[\begin{array}{l}
c_{x} / c_{w} \\
c_{y} / c_{w} \\
c_{z} / c_{w}
\end{array}\right] \Leftarrow\left[\begin{array}{c}
c_{x}(u) \\
c_{y}(u) \\
c_{z}(u) \\
c_{w}(u)
\end{array}\right]=\sum_{i=1}^{n} B_{i, k}(u)\left[\begin{array}{c}
w_{i} x_{i} \\
w_{i} y_{i} \\
w_{i} z_{i} \\
w_{i}
\end{array}\right]
$$

NURBS Surface

- NURBS surface definition:
- A NURBS surface of degree k in u direction and degree l in the v direction is:

$$
S(u, v)=\frac{\sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{p}_{i, j} w_{i, j} B_{i, k}(u) B_{j, l}(v)}{\sum_{i=0}^{n} \sum_{j=0}^{m} w_{i, j} B_{i, k}(u) B_{j, l}(v)}
$$

- Geometric interpolation
- Not the tensor-product formulation. (Compare it with Bezier and B-spline construction)

NURBS Surface

$$
s(u)=\frac{\sum_{i, j=1}^{n} p_{i j} w_{i j} B_{i, k}(u) B_{j, l}(v)}{\sum_{i, j=1}^{n} w_{i j} B_{i, k}(u) B_{j, l}(v)}
$$

$$
\left[\begin{array}{l}
s_{x} / s_{w} \\
s_{y} / s_{w} \\
s_{z} / s_{w}
\end{array}\right] \Leftarrow\left[\begin{array}{c}
s_{x}(u) \\
s_{y}(u) \\
s_{z}(u) \\
s_{w}(u)
\end{array}\right]=\sum_{i, j=1}^{n} B_{i, k}(u) B_{j, l}(v)\left[\begin{array}{c}
w_{i j} x_{i j} \\
w_{i j} y_{i j} \\
w_{i j} z_{i j} \\
w_{i j}
\end{array}\right]
$$

NURBS Surface

- Parametric variables: u and v
- Control points and their associated weights: $(m+1)(n+1)$
- Degrees of basis functions: (k-1) and (l-1)
- Knot sequence:

$$
\begin{aligned}
& \boldsymbol{u}_{\mathrm{o}}<=\boldsymbol{u}_{1}<=\ldots \ldots<=\boldsymbol{u}_{m+k} \\
& \boldsymbol{v}_{\mathrm{o}}<=\boldsymbol{v}_{1}<=\ldots \ldots<=\boldsymbol{v}_{n+l}
\end{aligned}
$$

- Parametric domain:

$$
\begin{aligned}
& \boldsymbol{u}_{k-1}<=\boldsymbol{u}<=\boldsymbol{u}_{m+1} \\
& \boldsymbol{v}_{l-1}<=\boldsymbol{v}<=\boldsymbol{v}_{n+1}
\end{aligned}
$$

NURBS Surface Property

Nonnegativity: $R_{i, j}(u, v) \geq 0$ for all i, j, u, and v;
Partition of unity: $\sum_{i=0}^{n} \sum_{j=0}^{m} R_{i, j}(u, v)=1$ for all $(u, v) \in[0,1] \times[0,1]$;
Local support: $R_{i, j}(u, v)=0$ if (u, v) is outside the rectangle given by $\left[u_{i}, u_{i+p+1}\right) \times\left[v_{j}, v_{j+q+1}\right)$;
In any given rectangle of the form $\left[u_{i_{0}}, u_{i_{0}+1}\right) \times\left[v_{j_{0}}, v_{j_{0}+1}\right)$, at most $(p+1)(q+1)$ basis functions are nonzero, in particular the $R_{i, j}(u, v)$ for: $i_{0}-p \leq i \leq i_{0}$ and $j_{0}-q \leq j \leq j_{0}$ are nonzero;

Corner point interpolation: $\mathbf{S}(0,0)=\mathbf{P}_{0,0}, \mathbf{S}(1,0)=\mathbf{P}_{n, 0}, \mathbf{S}(0,1)=$ $\mathbf{P}_{0, m}$, and $\mathbf{S}(1,1)=\mathbf{P}_{n, m}$;
Affine invariance: an affine transformation is applied to the surface by applying it to the control points;
Strong convex hull property: assume $w_{i, j} \geq 0$ for all i, j. If (u, v) \in $\left[u_{i_{0}}, u_{i_{0}+1}\right) \times\left[v_{j_{0}}, v_{j_{0}+1}\right)$, then $\mathbf{S}(u, v)$ is in the convex hull of the control points $\mathbf{P}_{i, j}, i_{0}-p \leq i \leq i_{0}$ and $j_{0}-q \leq j \leq j_{0}$;
Local modification: if $\mathbf{P}_{i, j}$ is moved, or $w_{i, j}$ is changed, it affects the surface shape only in the rectangle $\left[u_{i}, u_{i+p+1}\right) \times\left[v_{j}, v_{j+q+1}\right)$;

NURBS Surface Examples

NURBS Surfaces

- Good for
- Mechanical, manufactured parts
- Smooth free-form surface representation
- Bad for
- Non-genus-0 surfaces
- Interactive design of free-form surfaces

Why NURBS

- Support free-form curves/surfaces modeling.
- Represent standard analytic shapes precisely.
- Local support.
- Convex hull.
- Affine transformation invariant.
- Strict analytic form for evaluation (important in CAD/CAM/CAE).

Why NOT NURBS

- Hard to model arbitrary topology.
- Regularity of tensor-product control polygon poses difficulty for level of detail.

Allow T-junctions
\rightarrow T-splines
(details in EE7000 course)

Parametric Solids

- Tricubic solid

$$
\begin{aligned}
& \mathbf{p}(u, v, w)=\sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} \mathbf{a}_{i j k} u^{i} v^{j} w^{k} \\
& u, v, w \in[0,1]
\end{aligned}
$$

- Bezier solid

$$
\mathbf{p}(u, v, w)=\sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{i j k} B_{i}(u) B_{j}(v) B_{k}(w)
$$

- B-spline solid

$$
\mathbf{p}(u, v, w)=\sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{i j k} B_{i, I}(u) B_{j, J}(v) B_{k, K}(w)
$$

- NURBS solid

$$
\mathbf{p}(u, v, w)=\frac{\sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{i j k} q_{i j k} B_{i, I}(u) B_{j, J}(v) B_{k, k}(w)}{\sum_{i} \sum_{j} \sum_{k} q_{i j k} B_{i, I}(u) B_{j, J}(v) B_{k, K}(w)}
$$

Free-form Deformation

- Geometric objects are embedded into a space
- The surrounding space is represented by using commonly-used, popular splines
- Free-form deformation of the surrounding space
- All the embedded (geometric) objects are deformed accordingly, the quantitative measurement of deformation is obtained from the displacement vectors of the trivariate splines that define the surrounding space
- Essentially, the deformation is governed by the trivariate, volumetric splines
- Very popular in graphics and related fields

Free-form Deformations

(courtesy of Pauly et al.)

