/ M

Splines (2)

Xin (Shane) Li
Oct. 27, 2009




Review:
An n-degree parametric curve
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x()=at’+bt*+ct+d,
y(t)=at’+bt* +ct+d,,
z(t)=at’+bt’+ct+d,,
0<t<1

the Degree-3 example:
A Cubic curve segment: #

Given 4 geomeftric constraint vectors: we can solve all unknown coefficients

Different schemes: Hermite, Bezier...

»Are mathematically equivalent, one can convert to another
>allow different constraint vectors,

»convey different geometric insights




Review (cont.):
Cubic Hermite & Bezier Curves

Aforementioned two ways to formulate the cubic curve by weighted sum:
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Given 4 geometric constraint vectors: we can solve all unknown coefficients

Different schemes: Hermite, Bezier...
»Hermite: 2 endpoints position, two tangent vectors
»>Bezier: 2 endpoints position, two control points




Review (cont.):
Cubic Hermite & Bezier Curves

i3

C(t)= ZO B_ln (G, 4 Hermite Blending
= 03 Functions

® Hermite Curves:

f,o(t) = 2t° — 3t? + 1
f,(t) = —2t° + 3t°?
fo(t) = t° — 2t% +t

f,(t) = t° —t?

fit)
® Bezier Curves:

Bs(t) = (1-1)°
B (t) =3t(1-1t)°
B,(t) =3t°(1-1)
B)(t) =t°
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Review (cont.):
Parametric and Geometric Continuity

e Parametric continuity
e Depends on parameterization
* Geomeftric continuity

 Can become parametric continuity after
reparameterization




Bezier Curves

 Bezier curves of degree n

c(t) = Y B, (t)P,

i=0

e Basis functions (Bernstein polynomials of degree

n):
n o
o:0- (1o

(?j: (n—n:)!i!




Some Bezier curve examples
B (1) = [?jti(l— )" C (1) = Z B/ ()P,
d n=1: linear interpolation n oo
By(t) =1-t;B/(t)=t:C(t) = (1-t)P, + tP,

0 n=2 : recursive linear interpolation ™~

C(t)=(1-t)?P, +2t(1-t)P, + t*P, P,
a {Py, P4, P,} > control polygon
a Py=€(0) and P,=C(1)

0 Tangent directions at endpoints are
parallel o P;-P, and P,-P,

3 Curve contained in triangle P,PP,

P, = C(0) P, =C(1)




Some Bezier curve examples
B (1) = [?jti(l— )" C (t) = ZO B/ (t)P,

dn=3 : cubic Bezier curve .
C(t)=1-t)°P, +3t(1-t)?P, +3t°(1-t)P, + t°P, P,
a Control polygon (CP) approximates the curve shape,
curve contained in this convex hull
A Interpolate endpoints
O Tangent at endpoints are parallel to P;-P, and P,-P,

Q Variation diminishing property: no straight plane
intersects the curve more times than it intersects
the CP (curve doesn't wiggle more than CP) Py

P

dn=6 : a degree-6 closed Bezier curve
0 61 continuous at C(0)=C(1) "

Py

Py=Ps

Ps Py

Py
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Basic Properties of
Bezier Cubic Curves

B (t) = (?]t‘(l—t)”‘;c (t) = Z B (t)P,

0 The curve passes through the first and the last points
(end-point interpolation)

A The curve is a linear combination of control points and
basis functions

a Basis functions are all polynomials

0 Basis functions sum to one (partition of unity)
3 Basis functions are non-negative

3 Convex hull

A Predictability




Recursive Computation

o) =p.,i=01,2,.n
o) =@1-t)p/ " +tpl]
c(t) = pg(t)




Recursive Computation

e N+1 levels
(1 - t) (t)
K p
plo pln—l
JE p




Piecewise Bezier Curves




Piecewise Bezier Curves

e CO continuity
 C1 continuity

e G1 continuity

o C2 continuity

* G2 continuity

P; = (g

P: =0

(ps _pz) = (ql _qo)
P: =0
(P;—P,)=a(q,—0q,)
P: =0,

(ps _pz) = (ql _qo)

p3_2p2+p1:q2_ZQ1+QO
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Piecewise C2 Bezier Curves




From Bezier curves to Splines

O To design a long curve with many undulations
O One approach = a high-degree Bezier curve
a Global influence
0 Piecewise Bezier
0 Need to match endpoints and tangents
( p),p)=pi™, p/™" to be on the same line)
a No C2 continuity
0 Three commonly desirable properties of cubic curves:
1. C2 continuity
2. Interpolation
3. Local control
> Piecewise-Bezier curves »> 2,3 0r 1,2
> Natural cube spline > 1,2
> B-Spline > 1,3




Splines

0 Spline = long flexible strips of metal used by
draftspersons to lay out the surfaces of airplanes,
cars, and ships

0 The metal splines, unless severely stressed, had
second-order continuity

0 The mathematical equivalent of these strips, the
natural cubic spline, is C2 continuous cubic polynomial
that interpolates the control points (1 more degree of
continuity than Hermite and Bezier forms discussed
previously)

d Problem of natural cubic spline:
A Global control: dependent on all n control points
0 Computational time: inverting an n+l1 by n+1 matrix

R. Bartels, J. Beatty, and B. Barsky, “An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling”, Morgan Kaufmann, 1987




B-Spline Motivation

ad Local control:

3O Moving a control point only affects a small part

O Coefficient computational time is greatly reduced
- Do not interpolate all control points
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B-Spline Definition
0 Definition:  S0)=3 Pia(t) ¢ € st
0 A B-spline of degree n is a parametric curve
0 defined onto <t <---<in. (decided by given m knots)

0 composed by a linear combination of degree-n basis
functions

de.g.: adegree-3 parametric curve defined by:
O m+1 control points: R.R..R,,m=>3
0 m-2 cubic polynomial curve segments: Q,,Q,...Q,
0 Each cubic curve segment can be defined on p<t<1
but we translate them to be sequential: t <t<t,

ad There is a join point or knot between each Q,; and Q; at
the parameter value t; ; the parameter value at such a
point is called a knot value.

0 Totally: m-1 knots (including t; and t.,,)
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B-Spline Definition

i)

Q Definitions:

3 Uniform B-spline: knots are spaced at equal intervals of the
parameter t (e.g. t;=0, t;,;-t=1)

A Nonuniform B-spline: ...
0 Nonrational vs rational (later)

0 B-spline: >basis : splines are weighted sums of polynomial
basis functions (in contrast to the natural splines)




B-Spline Basis Functions

2 0 1 t<=t<t,
m—r
©7 |0 otherwise
—
B (t)— Eikl(t) b B (0)
|+k1 i |+k ti+1

Bezier curve is a special case of it




B-Spline Basis Functions

* Degree-1: A T_
1 te [0,] CemmmmlEs

Bo’l(t):{o o/ w

* Degree-2:

5 £y = t t e [0,1]
0'2()_{2—t t e [1,2]

3 N t — 1 t e [1,2]
1’2()_{3—t t e [2,3] 5
5 N t — 2 te [2,3]
2’2()_{4—t t e [3,4]




B-Spline Basis Functions

* Degree-3: Quadratic example (knot vector is

[0,1,2,3,45,6])
1.,
2t 0« t<1

By s(t) = ;—I(Z—t)+;—(t—l)(3—t),1<: t < 2

1—(3—t)2, 2 <= t <3 0 1 2 3
2

1 2

2_(t_1) ’ l<= t< 2

Bl,3(t): ;_(t_l)(3—t)+;—(t—Z)(4—t),2<= t < 3
1 2 3 <= t< 4
2—(4—t) ,

B, ,(t) = ...

B3,3(t) SRRELLTLE

* Degree-4:

N




B-Spline Basis Functions

BO,l B.L,l BZ,l 83,1 B4,1 BS,l BG,l
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B-Spline Properties

B, (1) is a piecewise polynomial of degree n, and with
C™! continuity
B, .(t) has a support of length n+1

Each curve segment is defined by n+1 control points,
and each control point affects at most n+1 curve
segments

The degree of basis functions is independent of the
number of control points

Convex hull, local control
Positivity, partition of unity, recursive evaluation




Uniform B-Spline

e Uniform vs Nonuniform:

» Uniform Cubic B-spline (represented as Bezier control
points)

v, 1 4 1 0] p,
v,| 1[0 4 2 0] p.,
v,| 6|0 2 4 0lp,,
v,| |0 1 4 1| p.s




Non-uniform B-Spline

* One of the most important advantage:

* Knot insertion (locally adding a control point without changing
the curve, for feature adjustment later)

e Insert a new knot
e Add a new control point, and update two control points
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NURBS

NURBS = Non Uniform Rational B-Splines

HRational Functions - ratios of two polynomials

dWhy: the need to represent some analytic shapes, for example,
conic sections (e.qg., circles, ellipses, parabolas)

> A non-uniform and rational extension of B-splines,

A unified representation for polynomials, conic sections, etc.

- The industry standard representation

QIntuitively, rational representation adds weights to the control
points, so that some control points are more important.

_pi,xWi
. - pi,yWi
B-Spline # C(u)_izzo P W, Brac)
w,
Z p;w;B;, (u)
NURBS » c(u) = =2
Z w;B;, (u)
i-0




Rational Bezier Curve

* Projecting a Bezier curve onto w=1 plane

@
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From B-Splines to NURBS
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NURBS Weights

* Weight increase "attracts” the curve towards
the associated control point

» Weight decrease "pushes away” the curve from
the associated control point




NURBS for Analytic Shapes

* Conic sections

* Natural quadrics

e Extruded surfaces

e Ruled surfaces

e Surfaces of revolution




NURBS Circle

O —@- ®
a,b,c,d,e,d,g
a=g @ w =10505105051 @ 0.
knot= [0,0,0,l, 22344 4] "[ehxepfélfd in

class...




NURBS Curve

* Geometric components
 Control points, parametric domain, weights, knots

* Homogeneous representation of B-splines

» Geometric meaning --- obtained from
projection
* Properties of NURBS

* Represent standard shapes, invariant under
perspective projection, B-spline is a special case,
weights as extra degrees of freedom, common
analytic shapes such as circles, clear geometric
meaning of weights




