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Review:
A  d  t i  An n-degree parametric curve
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yyyythe Degree-3 example:
A Cubic curve segment:

Given 4 geometric constraint vectors: we can solve all unknown coefficients
Different schemes: Hermite, Bezier…

Are mathematically equivalent  one can convert to anotherAre mathematically equivalent, one can convert to another
allow different constraint vectors, 
convey different geometric insights



Review (cont.):
C bi  H it & B i  CCubic Hermite & Bezier Curves

Aforementioned two ways to formulate the cubic curve by weighted sum:
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Given 4 geometric constraint vectors: we can solve all unknown coefficients
Different schemes: Hermite, Bezier…

Hermite: 2 endpoints position  two tangent vectorsHermite: 2 endpoints position, two tangent vectors
Bezier: 2 endpoints position, two control points



Review (cont.):
C bi  H it & B i  CCubic Hermite & Bezier Curves
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Bezier Curves:
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Review (cont.):
P t i  d G t i  C ti itParametric and Geometric Continuity

Parametric continuity
Depends on parameterization

Geometric continuity
C  b  t i  ti it  ft  Can become parametric continuity after 
reparameterization



Bezier CurvesBezier Curves
Bezier curves of degree n
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Basis functions (Bernstein polynomials of degree 
n):n)
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Some Bezier curve examples

n 1 : lin  int p l ti n 
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n=1 : linear interpolation 
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n=2 : recursive linear interpolation

{P0, P1, P2} control polygon
P0=C(0) and P2=C(1)
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Tangent directions at endpoints are 
parallel to P1-P0 and P2-P1
Curve contained in triangle P0P1P2



Some Bezier curve examples

n=3 : cubic Bezier curve
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n 3  cub c Bez er curve

Control polygon (CP) approximates the curve shape, 
curve contained in this convex hull
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Interpolate endpoints
Tangent at endpoints are parallel to P1-P0 and P2-P1
Variation diminishing property: no straight plane 
intersects the curve more times than it intersects 
the CP (curve doesn’t wiggle more than CP)

n=6 : a degree-6 closed Bezier curve
G1 continuous at C(0)=C(1)G1 continuous at C(0) C(1)



Basic Properties of 
B i  C bi  CBezier Cubic Curves
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The curve passes through the first and the last points 
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The curve passes through the first and the last points 
(end-point interpolation)
The curve is a linear combination of control points and 
basis functionsbasis functions
Basis functions are all polynomials
Basis functions sum to one (partition of unity)
B i  f ti   tiBasis functions are non-negative
Convex hull
Predictabilityy



Recursive C mputati nRecursive Computation
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Recursive C mputati nRecursive Computation
N+1 levels
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Piecewise Bezier CurvesPiecewise Bezier Curves



Piecewise Bezier CurvesPiecewise Bezier Curves
C0 continuity 03 qp =

C1 continuity
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Piecewise C2 Bezier CurvesPiecewise C2 Bezier Curves
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Fr m Bezier curves t  SplinesFrom Bezier curves to Splines
To design a long curve with many undulations

One approach a high-degree Bezier curveOne approach a high degree Bezier curve
Global influence

Piecewise Bezier
Need to match endpoints and tangents Need to match endpoints and tangents 

(                            to be on the same line)
No C2 continuity

Three commonly desirable properties of cubic curves:

1
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Three commonly desirable properties of cubic curves:
1. C2 continuity
2. Interpolation
3 Local control3. Local control

Piecewise-Bezier curves 2,3 or 1,2
Natural cube spline 1,2
B-Spline 1 3B Spline 1,3



SplinesSplines
Spline = long flexible strips of metal used by 
draftspersons to lay out the surfaces of airplanes  draftspersons to lay out the surfaces of airplanes, 
cars, and ships
The metal splines, unless severely stressed, had 
second-order continuitysecond-order continuity
The mathematical equivalent of these strips, the 
natural cubic spline, is C2 continuous cubic polynomial 
that interpolates the control points (1 more degree of that interpolates the control points (1 more degree of 
continuity than Hermite and Bezier forms discussed 
previously)
Problem of natural cubic spline:Problem of natural cubic spline:

Global control: dependent on all n control points
Computational time: inverting an n+1 by n+1 matrix

R. Bartels, J. Beatty, and B. Barsky, “An Introduction to Splines for Use in 
Computer Graphics and Geometric Modeling”, Morgan Kaufmann, 1987



B Spline M tivati nB-Spline Motivation
Local control:

Moving a control point only affects a small partMoving a control point only affects a small part
Coefficient computational time is greatly reduced

Do not interpolate all control points

knot

knot valueknot value



B Spline Definiti nB-Spline Definition
Definition:

A B-spline of degree n is a parametric curve 
defined on                       (decided by given m knots)
composed by a linear combination of degree-n basis composed by a linear combination of degree n basis 
functions

e.g. : a degree-3 parametric curve defined by:
m+1 control points: 3,,..., 10 ≥mPPPm+1 control points: 
m-2 cubic polynomial curve segments:
Each cubic curve segment can be defined on          
but we translate them to be sequential: 

3,,..., 10 ≥mPPP m

mQQQ ,..., 43
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but we translate them to be sequential: 
There is a join point or knot between each Qi-1 and Qi at 
the parameter value ti ; the parameter value at such a 
point is called a knot value

1+<≤ ii ttt

point is called a knot value.
Totally: m-1 knots (including t3 and tm+1)



B-Spline DefinitionB Spline Definition

Definitions:
Uniform B-spline: knots are spaced at equal intervals of the 
parameter t (e g  t3=0  ti+1-ti=1)parameter t (e.g. t3 0, ti+1 ti 1)
Nonuniform B-spline: …
Nonrational vs rational (later)
B spline: basis : splines are weighted sums of polynomial B-spline: basis : splines are weighted sums of polynomial 
basis functions (in contrast to the natural splines)



B Spline Basis Functi nsB-Spline Basis Functions
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Bezier curve is a special case of it



B Spline Basis Functi nsB-Spline Basis Functions
Degree-1:
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B Spline Basis Functi nsB-Spline Basis Functions
Degree-3: Quadratic example (knot vector is 
[0 1 2 3 4 5 6])[0,1,2,3,4,5,6])
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B Spline Basis FunctionsB-Spline Basis Functions

1,61,51,41,31,21,11,0

BBBBBB
BBBBBBB

3,43,33,23,13,0

2,52,42,32,22,12,0

BBBBB
BBBBBB

4,34,24,14,0 BBBB



B Spline Pr pertiesB-Spline Properties
Bi,n(t) is a piecewise polynomial of degree n, and with  
Cn-1 continuity  Cn-1 continuity  
Bi,n(t) has a support of length n+1
Each curve segment is defined by n+1 control points, g f y p ,
and each control point affects at most n+1 curve 
segments
The degree of basis functions is independent of the The degree of basis functions is independent of the 
number of control points
Convex hull, local control
Positivity, partition of unity, recursive evaluation



Unif rm B SplineUniform B-Spline
Uniform vs Nonuniform:

Uniform Cubic B-spline (represented as Bezier control p ( p
points)
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N n unif rm B SplineNon-uniform B-Spline
One of the most important advantage:

Knot insertion (locally adding a control point without changing Knot insertion (locally adding a control point without changing 
the curve, for feature adjustment later)

Insert a new knot
Add a new control point  and update two control pointsAdd a new control point, and update two control points



NURBSNURBS
NURBS = Non Uniform Rational B-Splines
Rational Functions ratios of two polynomialsRational Functions ratios of two polynomials
Why:  the need to represent some analytic shapes, for example, 

conic sections (e.g., circles, ellipses, parabolas)
A non-uniform and rational extension of B-splines, 
A ifi d t ti  f  l i l  i  ti  tA unified representation for polynomials, conic sections, etc.
The industry standard representation
Intuitively, rational representation adds weights to the control 

points, so that some control points are more important.p , m p m mp
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Rati nal Bezier CurveRational Bezier Curve
Projecting a Bezier curve onto w=1 planeProjecting a Bezier curve onto w 1 plane



Fr m B Splines t  NURBSFrom B-Splines to NURBS



NURBS Wei htsNURBS Weights
Weight increase “attracts” the curve towards 
h  d l the associated control point

Weight decrease “pushes away” the curve from 
the associated control pointthe associated control point



NURBS f r Analytic ShapesNURBS for Analytic Shapes
Conic sectionsConic sections
Natural quadrics
Extruded surfaces
Ruled surfaces
Surfaces of revolution



NURBS CircleNURBS Circle

ddb
1,5.0,5.0,1,5.0,5.0,1=iw

gd,e,d,c,b,a,
a=g … Will be 

]4,4,4,3,2,2,1,0,0,0[knot= explained in 
the next 
class… 



NURBS CurveNURBS Curve
Geometric components

C t l i t  t i  d i  i ht  k tControl points, parametric domain, weights, knots
Homogeneous representation of B-splines
Geometric meaning --- obtained from Geometric meaning --- obtained from 
projection
Properties of NURBS

Represent standard shapes, invariant under 
perspective projection, B-spline is a special case, 
weights as extra degrees of freedom, common g g ,
analytic shapes such as circles, clear geometric 
meaning of weights


