Splines (1)

Xin (Shane) Li Oct. 22, 2009

Piecewise linear approximation

- Previous: polygonal representation (meshes) and polylines are firstdegree, piecewise linear approximations to surfaces and curves
- When the object is not piecewise linear
- To improve its approximation accuracy
\rightarrow more sample points
\rightarrow large number of coordinates to be created and stored
- Interactive manipulation is tedious
- Need a more compact and more manipulable representation
- To use functions that are of a higher degree

Three general approaches

1) Explicit functions:
$\rightarrow y=f(x), z=g(x)$

- Can't get multiple values of y for a single $x \rightarrow$ closed curves must be represented by multiple segments
- Not rotationally invariant
- Curves with vertical tangents is difficult (infinite slop)

2) Implicit functions:
$\rightarrow f(x, y, z)=0$

- A simple equation is usually not enough, need several for constraints
- e.g. : a half circle
- Not easy to merge several simple sub-parts
- e.g. : when merge two curve segments, difficult to determine whether their tangent directions agree

3) Parametric representation:
$\rightarrow \mathrm{x}=\mathrm{x}(\mathrm{t}), \mathrm{y}=\mathrm{y}(\mathrm{t}), \mathrm{z}=\mathrm{z}(\mathrm{t})$
> Overcome above problems
$>$ geometric slopes (may be infinite) \rightarrow parametric tangent vectors (never infinite)
$>$ Piecewise linear shapes \rightarrow piecewise polynomial shapes

Parametric Curve

Parametric Cubic Curves

A curve segment defined by the cubic polynomial $Q(t)=[x(t) y(t) z(t)]$:

$$
\begin{aligned}
& x(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x}, \\
& y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y}, \\
& z(t)=a_{z} t^{3}+b_{z} t^{2}+c_{z} t+d_{z}, \\
& 0 \leq t \leq 1
\end{aligned}
$$

A more compact writing:

$$
\begin{aligned}
& T=\left[\begin{array}{llll}
t^{3} & t^{2} & t^{1}
\end{array}\right] ; \\
& C=\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z} \\
d_{x} & d_{y} & d_{z}
\end{array}\right] ; \\
& Q(t)=\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]=T \cdot C
\end{aligned}
$$

An example of two joined parametric cubic curve segments and their polynomials

Continuity

- One of the fundamental concepts
- Commonly used cases:

$$
C^{0}, C^{1}, C^{2}
$$

- Consider two curves: $a(u)$ and $b(u)$ (u is in $[0,1])$

Positional Continuity

$$
\mathbf{a}(1)=\mathbf{b}(0)
$$

Derivative Continuity

$$
\begin{aligned}
& \mathbf{a}(1)=\mathbf{b}(0) \\
& \mathbf{a}^{\prime}(1)=\mathbf{b}^{\prime}(0)
\end{aligned}
$$

General Continuity

- C^{n} continuity: derivatives (up to n-th) are the same at the joining point

$$
\begin{aligned}
& \mathbf{a}^{(i)}(1)=\mathbf{b}^{(i)}(0) \\
& i=0,1,2, \ldots, \quad n
\end{aligned}
$$

- The prior definition is for parametric continuity
- Parametric continuity depends of parameterization. But, parameterization is not unique.
- Different parametric representations may express the same geometry
- Re-parameterization can be implemented
- Another type of continuity: geometric continuity, or G^{n}

Geometric Continuity

- G^{0} and G^{1}

Geometric Continuity

- Depend on the curve geometry
- DO NOT depend on the underlying parameterization
- G^{0} : the same joint
- G^{1} : two curve tangents at the joint align, but may (or may not) have the same magnitude
- $\mathrm{G}^{\mathrm{n}}: \rightarrow \mathrm{C}^{\mathrm{n}}$ after the reparameterization
- Which condition is stronger?
$>$ geometric continuity is a relaxed for of parametric continuity
>parametric continuity disallows many parametrizations which generate geometrically smooth curves

Defining and Merging Curve Segments

- A curve segment is defined by constraints on endpoints, tangent vectors (or higher degree derivatives)
- e.g. : on each dimention, a cubic polynomial curve has four coefficients \leftarrow four constraints will be needed to solve for the unknowns
\rightarrow Most commonly used in computer graphics
\rightarrow Lower-degree polynomials give too little flexibility in controlling the shape of the curve (on position + tangent interpolation)
\rightarrow Higher-degree polynomials can introduce unwanted wiggles and also require more computation
- Three common types of curve segments:
- Hermite : defined by 2 endpoints +2 endpoint tangent vectors
- Bezier : defined by 2 endpoints and 2 other points (that control the endpoint tangent vectors)
- Several kinds of splines: defined by 4 control points

How coefficients depend on constraints

- Rewrite:

$$
\begin{aligned}
& T=\left[\begin{array}{llll}
t^{3} & t^{2} & t^{1} & 1
\end{array}\right] ; C=\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z} \\
d_{x} & d_{y} & d_{z}
\end{array}\right] ; \\
& Q(t)=\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]=T \cdot C
\end{aligned}
$$

$$
\begin{aligned}
) & =\left[\begin{array}{lllll}
x(t) & y(t) & z(t)
\end{array}\right]=T \cdot C \\
& =T \cdot M \cdot G=\left[\begin{array}{llll}
t^{3} & t^{2} & t^{1} & 1
\end{array}\right]\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right]\left[\begin{array}{c}
G_{1} \\
G_{2} \\
G_{3} \\
G_{4}
\end{array}\right] \quad \begin{array}{l}
\text { vectors } \\
\text { (constraints, } \\
\text { e.g. end points, } \\
\text { tangent) }
\end{array}
\end{aligned}
$$

- On $x(t)$:

$$
x(t)=T \cdot M \cdot G_{x}=\sum_{i=1}^{i=4} T\left[\begin{array}{c}
m_{1 i} \\
m_{2 i} \\
m_{3 i} \\
m_{4 i}
\end{array}\right] g_{i x}
$$

\rightarrow curve is a weighted sum of a column (x, or y, or z) of elements of the geometry matrix

- A generalization of straight-line approximation

Cubic Hermite Curve

Cubic Hermite Curve

- Hermite curve

$$
\mathbf{c}(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

- Two end-points and two tangents at end-points
- Therefore: $\left[\begin{array}{c}x(0) \\ x(1) \\ x^{\prime}(0) \\ x^{\prime}(1)\end{array}\right]=G_{x}^{H}=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 3 & 2 & 1 & 0\end{array}\right] \cdot M{ }^{H} \cdot G_{x}^{H}$

$$
\begin{aligned}
& \text { matrix inverse: } \\
& x(t)=T \cdot\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(0) \\
x^{\mathrm{H}}= \\
x^{\prime}(1) \\
x^{\prime}(0) \\
x^{\prime}(1)
\end{array}\right] \\
& y(t)=T \cdot M^{H} \cdot\left[\begin{array}{ccc}
y(0) & y(1) & y^{\prime}(0) \\
y^{\prime}(1)
\end{array}\right]^{T} \\
& z(t)=T \cdot M^{H} \cdot\left[\begin{array}{lll}
z(0) & z(1) & z^{\prime}(0) \\
z^{\prime}(1)
\end{array}\right]^{T}
\end{aligned}
$$

Hermite Curve

$$
Q(t)=T \cdot M^{H} \cdot G^{H}=B^{H} \cdot G^{H}
$$

- Basis functions

$$
\begin{aligned}
& f_{1}(t)=2 t^{3}-3 t^{2}+1 \\
& f_{2}(t)=-2 t^{3}+3 t^{2} \\
& f_{3}(t)=t^{3}-2 t^{2}+t \\
& f_{4}(t)=t^{3}-t^{2}
\end{aligned}
$$

$$
\mathbf{c}(t)=\mathbf{c}(0) f_{1}(t)+\mathbf{c}(1) f_{2}(t)
$$

$$
+\mathbf{c}^{\prime}(0) f_{3}(t)+\mathbf{c}^{\prime}(1) f_{4}(t)
$$

Cubic Hermite Splines

- Two vertices and two tangent vectors:

$$
\begin{aligned}
& \mathbf{c}(0)=\mathbf{v}_{0}, \mathbf{c}(1)=\mathbf{v}_{1} ; \\
& \mathbf{c}^{(1)}(0)=\mathbf{d}_{0}, \mathbf{c}^{(1)}(1)=\mathbf{d}_{1} ;
\end{aligned}
$$

- Hermite curve

$$
\begin{aligned}
& \mathbf{c}(t)=\mathbf{v}_{0} H_{0}^{3}(t)+\mathbf{v}_{1} H_{1}^{3}(t)+\mathbf{d}_{0} H_{2}^{3}(t)+\mathbf{d}_{1} H_{3}^{3}(t) \\
& H_{0}^{3}(t)=f_{1}(t), H_{1}^{3}(t)=f_{2}(t), H_{2}^{3}(t)=f_{3}(t), H_{3}^{3}(t)=f_{4}(t)
\end{aligned}
$$

Hermite Splines

- Higher-order polynomials

$$
\begin{aligned}
& \mathbf{c}(t)=\mathbf{v}_{0}^{0} H_{0}^{n}(t)+\mathbf{v}_{0}^{1} H_{1}^{n}(t)+\ldots+\mathbf{v}_{0}^{(n-1) / 2} H_{(n-1) / 2}^{n}(t) \\
& +\mathbf{v}_{1}^{(n-1) / 2} H_{(n+1) / 2}^{n}(t)+\ldots+\mathbf{v}_{1}^{1} H_{(n-1)}^{n}(t)+\mathbf{v}_{1}^{0} H_{n}^{n}(t) \\
& \mathbf{v}_{0}^{i}=\mathbf{c}^{(i)}(0), \mathbf{v}_{1}^{i}=\mathbf{c}^{(i)}(1), i=0, \ldots(n-1) / 2
\end{aligned}
$$

- Note that, n is odd!
- Geometric intuition
- Higher-order derivatives are required

Series of Hermite Curves

- Tangent vector direction and the curve shape
- see the right figure for an example, increasing magnitude of $\mathrm{R}_{1} \rightarrow$ higher cuves

- Continuity between two connecting Hermite cubic curves:
- Same end-points
- Same tangent vectors

High-Degree polynomials
 VS

Piecewise Polynomial

- More degrees of freedom
- Easy to formulate
- Infinitely differentiable
- Drawbacks:
- High-order
- Global control
- Expensive to compute, complex
- undulation

Piecewise Polynomials

- Piecewise --- different polynomials for different parts of the curve
- Advantages --- flexible, low-degree
- Disadvantages --- how to ensure smoothness at the joints (continuity)

Piecewise Hermite Curves

- How to build an interactive system to satisfy various constraints
- CO continuity

$$
\mathbf{a}(1)=\mathbf{b}(0)
$$

- C1 continuity

$$
\begin{aligned}
& \mathbf{a}(1)=\mathbf{b}(0) \\
& \mathbf{a}^{\prime}(1)=\mathbf{b}^{\prime}(0)
\end{aligned}
$$

- G1 continuity

$$
\begin{aligned}
& \mathbf{a}(1)=\mathbf{b}(0) \\
& \mathbf{a}^{\prime}(1)=\alpha \mathbf{b}^{\prime}(0)
\end{aligned}
$$

Piecewise Hermite Curves

Bezier Curve

Interpolate the two end control points, and approximates the other two points:

$$
Q^{\prime}(0)=3\left(P_{2}-P_{1}\right) ; Q^{\prime}(1)=3\left(P_{4}-P_{3}\right)
$$

Basis Matrix for Bezier Curve

- Following the last equation:
- Therefore, we derive the Bezier basis matrix from the Hermit form:

$$
\begin{aligned}
& G^{H}=M^{H B} \cdot G^{B} ; M^{B}=M^{H} \cdot M^{H B} ; \\
& Q(t)=T \cdot M^{H} \cdot G^{H}=T \cdot M^{H}\left(M^{H B} \cdot G^{B}\right)=T \cdot M^{B} \cdot G^{B} ;
\end{aligned}
$$

$M^{B}=\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right] \square T \cdot M^{B}=\left[\begin{array}{c}B_{0}^{3}(t)=(1-t)^{3} \\ B_{1}^{3}(t)=3 t(1-t)^{2} \\ B_{2}^{3}(t)=3 t^{2}(1-t) \\ B_{3}^{3}(t)=t^{3}\end{array}\right]$

Bernstein Polynomials

- Bezier curve

$$
\mathbf{c}(t)=\sum_{i=0}^{3} \mathbf{p}_{i} B_{i}^{3}(t)
$$

- Control points and basis functions

$$
\begin{aligned}
& B_{0}^{3}(t)=(1-t)^{3} \\
& B_{1}^{3}(t)=3 t(1-t)^{2} \\
& B_{2}^{3}(t)=3 t^{2}(1-t) \\
& B_{3}^{3}(t)=t^{3}
\end{aligned}
$$

Recursive Evaluation

- Recursive linear interpolation

$$
\begin{aligned}
& \text { (1-t) (} t \text {) } \\
& \begin{array}{llll}
\mathbf{p}_{0}^{0} & \mathbf{p}_{1}^{0} & \mathbf{p}_{2}^{0} & \mathbf{p}_{3}^{0}
\end{array} \\
& \begin{array}{lll}
\mathbf{p}_{0}^{1} & \mathbf{p}_{1}^{1} & \mathbf{p}_{2}^{1}
\end{array} \\
& \mathbf{p}_{0}^{2} \quad \mathbf{p}_{1}^{2} \\
& \mathbf{p}_{0}^{3}=\mathbf{c}(t)
\end{aligned}
$$

