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Piecewise linear approximation

Previous: polygonal representation (meshes) and polylines are first-
degree, piecewise linear approximations to surfaces and curves
When the object is not piecewise linear
e To improve its approximation accuracy
- more sample points
- large number of coordinates to be created and stored

Interactive manipulation is tedious

Need a more compact and more manipulable representation
e To use functions that are of a higher degree
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Three general approaches

1) Explicit functions:

= y=f(x), z=g(x)
e Can't get multiple values of y for a single x > closed curves must be represented
by multiple segments

e Not rotationally invariant
e Curves with vertical tangents is difficult (infinite slop)

2) Implicit functions:
- f(x,y,2)=0
» A simple equation is usually not enough, need several for constraints
e.g.: a half circle
* Not easy to merge several simple sub-parts
e.g. : when merge two curve segments, difficult fo determine whether their tangent directions agree
3) Parametric representation:
2 x=x(t), y=y(t), z=z(t)
> Overcome above problems
> geomeftric slopes (may be infinite) > parametric fangent vectors (never infinite)
> Piecewise linear shapes - piecewise polynomial shapes
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Parametric Curve
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Parametric Cubic Curves

. _ x()=at*+bt’+ct+d,
A curve segment defined by the cubic yt)=at* +bt? +ot+d,

polynomial Q(t)=[x(t) y(t) z(t)]: 2O =at’+bt2+ctrd,,
0<t<1

A more compact writing: T-[t' ¢ t 1

a, a, a,|
b, b, b,
C= :
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QM) =[x®) y(t) z(®)]=T-C

y(t) yit)
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An example of two joined parametric T

cubic curve segments and their
polynomials




Continuity

* One of the fundamental concepts

e Commonly used cases: coOcl e

» Consider two curves: a(u) and b(u) (uis in [0,1])




Positional Continuity

a(l) =b(0)
S ?
] \
\
~




Derivative Continuity

a(1) = b(0)
a'(1) = b'(0)
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General Continuity

e C" continuity: derivatives (up to n-th) are the same
at the joining point 4 () (1) = p () (0)

1=0,1,2,....., n

* The prior definition is for parametric continuity

» Parametric continuity depends of parameterization.
But, parameterization is not unique.

» Different parametric representations may express
the same geometry

* Re-parameterization can be implemented

* Another type of continuity: geometric continuity,
or G"




Geometric Continuity
* G’ and G!?
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Geometric Continuity

* Depend on the curve geometry

* DO NOT depend on the underlying
parameterization

* G%: the same joint

* G two curve tangents at the joint align, but
may (or may hot) have the same magnitude

e G": &> C"after the reparameterization
e Which condition is stronger?

»geometric continuity is a relaxed for of parametric
continuity

»parametric continuity disallows many parametrizations
which generate geometrically smooth curves
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Defining and Merging Curve Segments
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A curve segment is defined by constraints on endpoints,
tangent vectors (or higher degree derivatives)

e.g. : on each dimention, a cubic polynomial curve has four
coefficients € four constrajnts will be needed to solve for
the unknowns

Most commonly used in computer graphics

Lower-degree polynomials give too little flexibility in controlling the shape
of the curve (on position + tangent interpolation)

Higher-degree polynomials can introduce unwanted wiggles and also
require more computation

Three common types of curve segments:
Hermite : defined by 2 endpoints + 2 endpoint tangent vectors

Bezier : defined by 2 endpoints and 2 other points (that control
the endpoint tangent vectors)

Several kinds of splines: defined by 4 control points
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How coefficients depend on constraints

. (a, a, a,]
* Rewrite: e Basis matrix
d. d, d,] Geometric
QM) =[x(t) yt) zM®I=T-C vectors

m, my, Mg m14__ 1_/ (COI’lStI’aIntS
=T-M-G=[t* t* t' 1] Mz Mz Mz Ma e.g. end points,

tangent)
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e On x(1):

x(t) =T -M -G, =X

X
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—>a curve is a weighted sum of a column (x, ory, or z) of elements of
the geometry matrix

* A generalization of straight-line approximation
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Cubic Hermite Curve

C'(0)

C(0)

C(1)

C(1)




Cubic Hermite Curve

e Hermite curve X ()
c(t) =] y(1)
z(t)

» Two end-points and two tangents at end-points

x (0) 0 0 0 1
e Therefore: L O I T O IO VIS
Xx'(0) g 0 0 1 1
X "(1) 3 2 1 0
MF= T2 —2 1 177 x(0)]
matrix inverse: -3 3 -2 -11 x@)

XO=T1 % o 1 0 |x()

1 0 0 0 || x'(1) |
y) =T -M*[y0) ya) y@© ymT
z(t)y =T -M " .[z(0) z(@@) z'(0) z()]




Hermite Curve
Q(t) =T -M " .c" =B" .g "

e Basis functions

fo(t) = 2t - 3t° +1 ¢ Hermite Blending
fo(t) = —2t° + 3t?2 08 Functions
fo(t) = t% - 2t2 + t .

f4(t):t3_t2 0B
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Cubic Hermite Splines

* Two vertices and two tangent vectors:

c(0) = vo,c(1) = v,;
cM(0) = do,c(l)(l) =d,;

e Hermite curve
c(t) =V, Hg (t) +V1H13 (t)+d, Hg (t)+d, Hg (t);

H3 () = f,(t), HS () = f,(t), Hy () = ,(t), H3 (1) = T, ¢)




Hermite Splines

* Higher-order polynomials

c(t) = VoH g () + voH[ (1) + ... + v " H -1z ()
T Vin_l)/z H (nn+1)/2 (t)+...+ viH (nn—l) (t) + viH ] (1);
vy =¢(0),v; =cV(1),i=0,..(n-1)/2;

e Note that, nis odd!

e Geometric intuition
* Higher-order derivatives are required




Series of Hermite Curves

()
4 Tangent vector

. . direction AR, at point
e Tangent vector direction and the | fy magnitude varies
curve shape

 see the right figure for an example,
increasing magnitude of R, = higher
cuves
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Continuity between two

connecting Hermite cubic curves:
e Same end-points /_\j\/
e Same tangent vectors ]
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High-Degree polynomials
VS
Piecewise Polynomial

* More degrees of freedom
 Easy to formulate
* Infinitely differentiable
* Drawbacks:

* High-order

e Global control

» Expensive to compute, complex
e undulation




Piecewise Polynomials

* Piecewise --- different polynomials for
different parts of the curve

» Advantages --- flexible, low-degree

» Disadvantages --- how to ensure smoothness at
the joints (continuity)




Piecewise Hermite Curves

e How to build an interactive system to satisfy
various constraints

e CO continuity

a() =b(0)
 Cl continuity a(l) = b(0)
a'(1) =b'(0)
e G1 continuity
a(l) =b(0)

a'(1) = ab'(0)




Piecewise Hermite Curves




Bezier Curve

Interpolate the two end control points,
and approximates the other two points:

—’*%

Q'(0) =3(P, - P);Q"(1) = 3(P, = P;)
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Basis Matrix for Bezier Curve

¢ Following the last equation: |
I Bezier

Q (0) 1 0 0 0 P, / geometry
Q(l)} [ 0 0 1}-{PZ}M B g B vector

Q '(0) -3 3 0 0 P,

Q '(1) 0 o -3 3 P,

e Therefore, we derive the Bezier basis matrix
from the Hermit form:
GH:MHB'GB;MB:MH°M HB;

Q(’[):T-I\/IH-GH =T -M H(M HB-GB):T-I\/I .G B

-8 -8 1 B = (-1
_ 3 _ _ 2
ve |3 6 3 0 » Tom e Bls(t) 3t§1 t)
-3 3 0 O BJ(t) =3t*(1-t)
1 0 0 0 B, (t) =t’




Bernstein Polynomials

e Bezier curve ;

c(t) = Z p,B(t)

=0

 Control points and basis functions

fo)

B3(t) = (1-1)° "

BS(t) = 3t(1-1t)°
B,(t) =3t°(1-1)
B)(t) =t°

(1)




Recursive Evaluation

» Recursive linear interpolation

(1-1) ()

Po P: Py P;
i p p,
2

P, P:
p, =c(t)




