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Piecewise linear appr ximati nPiecewise linear approximation
Previous: polygonal representation (meshes) and polylines are first-
d  i i  li  i ti  t  f  d degree, piecewise linear approximations to surfaces and curves
When the object is not piecewise linear

To improve its approximation accuracy 
more sample points

large number of coordinates to be created and stored
Interactive manipulation is tediousp
Need a more compact and more manipulable representation

To use functions that are of a higher degree



Three general approachesg pp
1) Explicit functions: 

y=f(x), z=g(x)
Can’t get multiple values of y for a single x closed curves must be represented Can t get multiple values of y for a single x closed curves must be represented 
by multiple segments
Not rotationally invariant
Curves with vertical tangents is difficult (infinite slop)

2) Implicit functions:
f(x,y,z)=0
A simple equation is usually not enough, need several for constraints

e.g. : a half circle

Not easy to merge several simple sub-parts
e.g. : when merge two curve segments, difficult to determine whether their tangent directions agree 

3) Parametric representation:3) Parametric representation:
x=x(t), y=y(t), z=z(t)
Overcome above problems
geometric slopes (may be infinite) parametric tangent vectors (never infinite)
Piecewise linear shapes piecewise polynomial shapes



Parametric CurveParametric Curve



Parametric Cubic Curves
A curve segment defined by the cubic 

polynomial Q(t)=[x(t) y(t) z(t)]: )(
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A more compact writing: tttT = ];1[ 123A more compact writing:
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An example of two joined parametric p j p
cubic curve segments and their 
polynomials



C ntinuityContinuity
One of the fundamental concepts
Commonly used cases:

210 ,, CCC

Consider two curves: a(u) and b(u) (u is in [0,1])



P siti nal C ntinuityPositional Continuity
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Derivative C ntinuityDerivative Continuity
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General C ntinuityGeneral Continuity
Cn continuity: derivatives (up to n-th) are the same 
at the joining point ii )0()1( )()(at the joining point
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The prior definition is for parametric continuity
Parametric continuity depends of parameterization. 
But  parameterization is not uniqueBut, parameterization is not unique.
Different parametric representations may express 
the same geometry
Re-parameterization can be implemented
Another type of continuity: geometric continuity, 
or Gnor G



Ge metric C ntinuityGeometric Continuity
G0 and G1



Ge metric C ntinuityGeometric Continuity
Depend on the curve geometry
DO NOT d d  h  d l  DO NOT depend on the underlying 
parameterization
G0 : the same jointG : the same joint
G1: two curve tangents at the joint align, but 
may (or may not) have the same magnitudey y g
Gn : Cn after the reparameterization
Which condition is stronger?

geometric continuity is a relaxed for of parametric 
continuity

parametric continuity disallows many parametrizations
which generate geometrically smooth curveswhich generate geometrically smooth curves



Defining and Merging Curve Segmentsg g g g

A curve segment is defined by constraints on endpoints, 
tangent vectors (or higher degree derivatives)tangent vectors (or higher degree derivatives)
e.g. : on each dimention, a cubic polynomial curve has four 
coefficients four constraints will be needed to solve for 
the unknownsthe unknowns

Most commonly used in computer graphics
Lower-degree polynomials give too little flexibility in controlling the shape g p y g y g p
of the curve (on position + tangent interpolation)
Higher-degree polynomials can introduce unwanted wiggles and also 
require more computation

Three common types of curve segments:Three common types of curve segments:
Hermite : defined by 2 endpoints + 2 endpoint tangent vectors
Bezier    : defined by 2 endpoints and 2 other points (that control 
the endpoint tangent vectors)the endpoint tangent vectors)
Several kinds of splines: defined by 4 control points 



How coefficients depend on constraintsHow coefficients depend on constraints

Rewrite:
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a curve is a weighted sum of a column (x, or y, or z) of elements of 
the geometry matrix

im ⎦⎣ 4

A generalization of straight-line approximation



Cubic Hermite CurveCubic Hermite Curve
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Cubic Hermite CurveCubic Hermite Curve
Hermite curve

⎥
⎤

⎢
⎡

)(
)(

)(
tx

Two end-points and two tangents at end-points
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Hermite CurveHermite Curve

Basis functions
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Cubic Hermite SplinesCubic Hermite Splines
Two vertices and two tangent vectors:
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Hermite SplinesHermite Splines
Higher-order polynomials
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Geometric intuition
Higher-order derivatives are required



Series of Hermite CurvesSeries of Hermite Curves

Tangent vector direction and the Tangent vector direction and the 
curve shape

see the right figure for an example, 
increasing magnitude of R higher increasing magnitude of R1 higher 
cuves

Continuity between two 
connecting Hermite cubic curves:g

Same end-points
Same tangent vectors



High-Degree polynomials
VS

Piecewise Polynomial y
More degrees of freedom
E   f lEasy to formulate
Infinitely differentiable
D b kDrawbacks:

High-order
Global controlGlobal control
Expensive to compute, complex
undulation



Piecewise P lyn mialsPiecewise Polynomials
Piecewise --- different polynomials for 
d ff   f h  different parts of the curve
Advantages --- flexible, low-degree
Di d t  h  t   th  t Disadvantages --- how to ensure smoothness at 
the joints (continuity)



Piecewise Hermite CurvesPiecewise Hermite Curves
How to build an interactive system to satisfy 

i  t i tvarious constraints
C0 continuity
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C1 continuity
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Piecewise Hermite CurvesPiecewise Hermite Curves



Bezier CurveBezier Curve

Interpolate the two end control points  Interpolate the two end control points, 
and approximates the other two points:
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Basis Matrix for Bezier CurveBasis Matrix for Bezier Curve
Following the last equation:

Bezier
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Therefore, we derive the Bezier basis matrix 
f m th  H mit f m:
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Bernstein PolynomialsBernstein Polynomials
Bezier curve
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Recursive Evaluati nRecursive Evaluation
Recursive linear interpolation
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