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Object Representations
a) Point Clouds
b) Polygonal Meshes
c) Parametric Representations, e.g. Splines, 

Fourier (or spherical, in 3D) Harmonics
d) Voxel/Spatial Representations
e) Feature Representations
f) Medial Representations



Object Representations
c) Parametric Representations, e.g. Splines, Fourier (or spherical, in 

3D) Harmonics

Boundary representation via basis functions: splines, orthogonal function 
decomposition

Represent an object of a particular topology by a smooth continuous 
mapping from the surface of a standard domain of the same topology

This vector mapping function can be decomposed into orthonormal
functions

Derivatives available, normals/curvatures derived analytically



Object Representations
d) Voxel/Spatial Representations

Simple, Hierarchical refinement, Efficiency

Gives easy access both to boundaries and to interiors

Large computer storage space required 



Medial Representation
Represent an object by a center locus (medial axis) and distance to the 

boundary (medial radius)
Object union of overlapping bitangent spheres



Advantages
an interior representation of the object and thus is subject to 
both geometric and mechanical operations applicable on the 
object’s interior, such as bending, widening, elongation, and 
warping.

provides rich topological and geometric information of an 
object.

Effective/efficient for storage and for some applications.
Automatic object recognition 
intuitive to non experts
…



Curve-Skeleton for 3D Objects
Curve-Skeleton

Thin 1D representations of 3D Objects
Applications

Visualization: virtual navigation, complex data visualization
Modeling/Robotics: reduced-model formulation
Graphics: animation (IK), morphing
Other Geometric Processing: shape comparison, shape decomposition

Computation methods
Over image space – more hardware oriented

Thinning and Boundary Propagation
Over object space – more general and with richer math structure

Geometry Methods



Definitions
Medial Axis:

-> A set of curves defined as the locus of points that 
have at least 2 closest points on the boundary

In 3D Medial Surface
Grass-fire analogy:

Shape domain made entirely of grass
Set fire on all boundary points
Fire fronts meet and quench each other at 
the medial axis/surface 

Frequently interchangeably used as 
“Skeleton”
The process of obtaining a skeleton

skeletonization



Mathematical Definition



Medial Axis is sensitive 
see (b):
small change on boundary can 
large change on skeleton

A concise/simplified representation is 
desirable

Animation/Matching…
More definition of curve-skeletons

T.K. Dey and J. Sun, “Defining and computing 
curve-skeletons with medial geodesic function”, 
Proc. SGP06.
A. Lieutier, “Any open bounded subset of Rn has the 
same homotopy type than its medial axis”, Proc. 
ACM SMI03.
…

Definitions (cont.)



Definitions formulated in continuous space
in computer, geometric datasets are discrete

continuous space or discrete space

Smooth/Discrete Space

Data with geometric representation (mesh, splines) 

Data with discrete representation (grids, voxel) 

voxelization surface extraction

In discrete space:
many efficient and intuitive algorithms
discretization approximation error



Homotopic (topology preserving)
Invariant under Isometry
Reconstruction
Thinness
Centeredness
Reliability
Smoothness
Component-wise differentiation
Robustness
Efficiency
Hierachical

Curve-Skeleton Properties



1. Homotopic (topology preserving)
Homotopic to original object
Topological equivalence = same # of components, handles, (cavities)
one handle of the object one loop on its skeleton
For cavities in 3-manifolds (relaxed definition):
The same number of connected components and at least one loop for 
each tunnel and cavity in the original object

Curve-Skeleton Properties



2. Invariant under isometric transformation

i.e. shape is invariant under rigid transformation
important for automatic shape matching etc.

Difficult if the discretization is not isometric invariant

Curve-Skeleton Properties



3. Reconstruction:
The ability to reconstruct the original object:

An intuitive indication of the quality of geometry abstraction
To improve the reconstruction quality:

Store more information in curve-skeleton nodes
Increase the number of branches in the curve-skeleton

Curve-Skeleton Properties

4. Thin:
should be 1-dimentional : 
homotopic to R1 except on branch points

an abstract graph with nodes and arcs



5. Centered: 
an important characteristic of a curve-skeleton 

its centeredness within the object.
exact centeredness required/desired or not (in consideration 
of the sensitivity to noise) [related to robustness]

Curve-Skeleton Properties

6. Reliable:
every boundary point is visible from at least one skeleton node
Ensuring all boundary points is reliably examined

7. Smooth:
Useful for virtual navigation (camera moving)
Ensuring small tangent variation across different segments



8. Hierarchy:
can generate a set of curve-skeletons representing hierarchical 
complexities
multi-resolution matching, partial matching

Curve-Skeleton Properties

9. Efficient:
Real-time computation



-- Following [N. Cornea, D. Silver, P. Min, “Curve-Skeleton 
Properties, Applications, and Algorithms”, TVCG2006]

Algorithm Classes

Thinning
Distance field
Geometric methods

Cores and M-reps
Reeb graph
…

General-field functions
Potential field function
Electrostatic field function
…



— by O. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, T.-Y. Lee, in Proc. SIGGraph 2008

Skeleton Extraction by Mesh Contraction



Algorithm Pipeline

Input: G=(V,E)
V mesh vertices, and their positions
E mesh edges

Output: S=(U,B)
U skeleton nodes 
B skeleton arcs (edges)

1. [Geometry Contraction]
-- Contract the mesh into a 0-volume skeletal shape

2. [Connectivity Surgery]
-- Convert the contracted mesh into a 1D curve-skeleton

3. [Embedding Refinement]



1. Geometry Contraction

Basic Idea:
Contract the mesh geometry into a zero-volume skeletal shape
Move vertices along their approximate curvature normal directions
Remove surface details and noise by applying a Laplacian smoothing



1. Geometry Contraction
Laplacian smoothing

The Laplacian coordinate                                       
approximate the (inward) curvature-flow normal

(local 1-ring area, local mean curvature, approximate outward normal)
Removing the normal component of V:

A unique solution V’
To avoid degeneracy and approximate geometry:

constrain vertices to their current positions (soft constraints)
a.k.a. attraction constraints
balance contraction constraints and attraction constraints



1. Geometry Contraction
More about contraction:

solve once one contraction
details filtered
same weights may get stuck

change weights further contract
Large WL fast contraction
Intuition: vertices with smaller contracted 1-ring area to be attracted 
more strongly



1. Geometry Contraction
More about contraction:

solve once one contraction
details filtered
same weights may get stuck

change weights further contract
Large WL fast contraction
Intuition: vertices with smaller contracted 1-ring area to be attracted 
more strongly

contraction
attraction



2. Connectivity Surgery
contracted mesh after Step-1:

zero-volume (is visually a skeleton)
still topologically equals to the original dense mesh

to a real 1D graph (skeleton)
Algorithm:
1) Define a cost function
2) Edge collapse based on its cost

2) Collapse  
“Half edge collapse”:
1.
2. remove all faces incident to the collapsed edge

(details: remove duplicated edges, but prevent “loop collapse”)



2. Connectivity Surgery
1) Cost function:

Shape cost
QEM (M. Garland and P. Heckbert, “Surface Simplification using Quadratic Error Metric”, SIGGraph97)

Estimates distortion caused by an edge collapse 
by computing an error metric at each vertex

QEM-like mechanism here

Sample cost
long straight edges  (1) lose edge-face correspondence

(2) centerness violation prone
to penalize this: 

measure total distance of adjacent verts

Total cost:



3. Embedding Refinement
Iterative contraction skeletal shape off center or go outside the mesh
(especially where adjacent object components have large differences in 

thickness and curvature)

Idea:
1. move each skeleton node k to the approximate center of its corresponding 

local mesh region  shifting the skeletal nodes
2. merge  junction nodes (if the merge better centeredness)



3. Embedding Refinement
Idea:

1. move each skeleton node k to the approximate center of its corresponding 
local mesh region  shifting the skeletal nodes

2. merge  junction nodes (if the merge better centeredness)

Detail:
centeredness = standard deviation of distances between the junction node 

and its neighboring points



Property Discussion
Directly apply on mesh surface data (using Laplacian operator)

Homotopic

Robust, insensitive to noise (due to the smoothing process)

Invariant to rigid transformation (intrinsic, no global coordinates)

Extra information preserved during contraction and collapse 
reconstruction

Video



— by V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, in Proc. SIGGraph 2007

Robust On-line Computation of Reeb
Graph: Simplicity and Speed



Contributions:

Linear scalability to the surface vertex #
Robustly handling noisy geometric data 

Apply to topological denoise
Applicable to non-manifolds, 3D, 4D and 5D simplicial
meshes

Video1 Video2



Reeb Graphs (RG)

Definition:
Given a simplicial mesh M, 
with a piecewise linear (PL) function F sampled at its vertices
Level-set at a value s set of points in M with F value equal to s
Connected components of the level-sets contours

RG construction:
by contracting contours of F to points
nodes contours passing critical points, (associated with vertices)
arcs connecting nodes
Path monotonic seq. of arcs

RG Properties
since topology changes only at critical 

points;
so an arc a family of contours that 

do NOT change topology.



Reeb Graphs (RG) (cont.)

i. A simple robust algorithm to get RG
ii. Modifications to i. to

1) Increase performance
2) Compute an embedding 
3) Simplify RG

Input Mesh: triangular mesh

Input Function: provided/run-time 
computed

Data Structure:

RG:

Mesh:

node index to corresponding vertex
arc a list of pointers to edges (that intersect the contours represented by this arc)

edge e a pointer to the highest (in F) arc in RG that has a pointer to e
intersects a family of contours that may span several arcs in RG



RG Construction Figure



RG Construction

Basic Operations (see illustration figure)
CreateNode(i,w): add a new node with index-i, value-w to RG
CreateArc(i,j): add a new arc connecting node i and node j to RG
MergePaths(e1,e2,e3): merge paths e1, e2, and e3 in RG

General Algorithm:
Parse the mesh, process at the same time
Update the RG whenever a vertex or an edge is parsed

Read a vertex: -CreateNode
Read a triangle: -CreateArc , -MergePaths

A final pass, and remove degree-two nodes

Example: in illustration figure (a)-(f)
Insert n1
Insert arcs
Merge
Remove edge



Correctness

Proof by induction:

Adding a new triangle to M
Changing of RG

Init: empty RG



Optimizations and Embedding

RemoveEdge(e1)
Follow the path corresponding to e1, and remove all its occurrences
Used when 

an edge (whose two adjacent triangles have already been processed) cannot 
be involved in any subsequent updates of RG   [see illustration figure (d)]
an edge when both its vertices have been finalized (all incident triangles to a 
vertex have been processed)

Reduce the storage requirements, and improve performance

Embedding:  -- based on the coordinates of the input vertices
Store with each arc an ordered sequence of buckets 

-- partition the range of function value spanned by the arc
e.g. , function value in [0,100], want 200 sections:

if an arc spans values from 53.7 to 71.2
then we store buckets with separating values (53.5, 4, 54.5, …, 71.5)
each bucket contains NV (# of verts) and P (their average position)

initiate buckets when CreateArc(), 
update buckets when (a) MergePaths() and (b) removing nodes of degree-2



Noise handling, Simplification and Hierarchy

Simplification and Hierarchy progressive visualization/processing
-- Loop persistence [Agarwal et al. 2004] (Pairing max-saddle, min-saddle, saddle-

saddle for measurement)
Computing:
1. Compute all possible persistence pairs
2. Cancel pairs of critical points in increasing order of persistence

(see the above figure, (a) extremum-saddle cancellation, and (b) saddle-saddle 
cancellation)

On-line noise removal:
Practical data are often noisy RG needs noise removal
Persistence based simplification [Edelsbrunner et al. 2000]

Remove extremum-saddle pairs whose persistence is less than a threshold



Higher Dimensional Meshes

Proof:
Contracting connected components of 
level-sets to points RG
A component of the level-set of F, 
defined on a d-manifold M:

This component C (d-1)-
dimensional 
Boundary of C (d-2)-
dimensional

The topology (connectedness) of a 
level-set component is determined by 
its 1-skeleton
Extract a level-set of F defined on M 
and then extract its 1-skeleton
Restrict F to M’ and extract the 
level-set of F’ defined on M’



Efficiency



— by Y. He, X. Xiao, H.-S. Seah, in Graphical Models 2009

Harmonic 1-form based skeleton 
extraction from examples



Static Models vs Deforming Models
Static skeletonization: 

Single model, not for skinning (dynamic parameters such as transformations, 
joint locations, vertex weights are hard to obtain from one static shape)

Example based skeletonization:
Possible to determine the joints
Intuition:

Many real-world deformations are isometric or near-isometric
Near-joint skins similar Gaussian curvature, different mean curvature
Far-from-joint skins similar Gaussian and mean curvature
So curvatures indentify and locate joints

Surfaces  have similar 
metric but different 
embedding (appearance 
in R3)

Their Gaussian 
curvatures are 
similar but mean 
curvatures are not

Deformations are caused by 
bending instead of stretching



Harmonic 1-form
Challenges:

need mapping
need robust curvature 
estimation (discrete 
operators sensitive to noise 
and meshing)

Harmonic 1-form
1. Determined by metric, invariant 

under isometry
2. Independent of meshing
3. Computational efficient
4. Symmetric on symmetric shapes

Algorithm pipeline:
1) Compute harmonic 1-forms
2) Isocurve skeleton-like Reeb graph of harmonic functions
3) Identify initial locations of joins (by mean curvature changes) 
4) Refine joint locations by solving a constrained optimization problem



Algorithm

Algorithm pipeline:
1) Compute harmonic 1-forms
2) Isocurve skeleton-like Reeb graph of harmonic functions
3) Identify initial locations of joints (by mean curvature changes) 
4) Refine joint locations by solving a constrained optimization problem



Computing Harmonic 1-form

Computing harmonic 1-form: 
1) Boundary condition: homology basis

Or [Dong et. al. Harmonic functions for quadrilateral remeshing of arbitrary manifolds, 
CAGD2005]: pick a minimal vertex, solve a Poisson equation (mimics the 
curvature of the input mesh), then find the local extrema as the boundary 
vertices

2) Solving harmonic functions using cotangent weights



Computing Skeleton-like Reeb Graph

Contracting the connected components of the isocurves:
Normalize the function value to [0,1]
Uniformly sample isovalues
Add in critical points
Sweep algorithm to connect them RG



Identify Joints, Optimize their Locations

Joints indentification mean curvature

Optimizing the joint locations:
RG nodes not anatomical skeletons
By examples: length-preserving:



Applications
Skeleton Transfer

Pose space deformation



Applications (cont.)
Skeleton-driven Shape Segmentation

Pose-invariant Shape Signature
Signature invariant of “pose”
Tolerate 
rotation/scaling/translation/def
ormation
Defined over iso-contour
Normalized length (NL) + 
Integration of Gaussian 
Curvature (IGC)
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