Simplicial Complex and Barycentric Coordinates

Xin Shane Li

October 13, 2010

Simplicial Complex

Barycentric Coordinates

Triangle Mesh and Simplicial Complex

- All smooth surfaces can be triangulated.

Triangle Mesh and Simplicial Complex

- All smooth surfaces can be triangulated.
- Refine the triangulation \rightarrow the mesh becomes closer to the original smooth surface.

Triangle Mesh and Simplicial Complex

- All smooth surfaces can be triangulated.
- Refine the triangulation \rightarrow the mesh becomes closer to the original smooth surface.
- A triangle mesh can be rigorously defined as a simplicial complex, unlike the simple grid structure which is also widely used.

Triangle Mesh and Simplicial Complex

- All smooth surfaces can be triangulated.
- Refine the triangulation \rightarrow the mesh becomes closer to the original smooth surface.
- A triangle mesh can be rigorously defined as a simplicial complex, unlike the simple grid structure which is also widely used.
- Later, splines can be defined on simplicial complex structures (e.g. on triangle meshes), or the tensor-product structures (e.g. on grids).

Simplicial Complex－Simplex

－Intuition：to define a triangle mesh，you start from defining vertices，edges，and faces．
－These elements are called Simplexes．
Definition（k－dimensional Simplex）
Suppose $k+1$ points $\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ are non－degenerate in $\mathbb{R}^{n}, n \geq k+1$ ，the standard simplex $\left[v_{0}, v_{1}, \ldots, v_{k}\right]$ is the minimal convex set including all of them，

$$
\sigma=\left[v_{0}, v_{1}, \ldots, v_{k}\right]=\left\{x \in \mathbb{R}^{n} \mid x=\sum_{i=0}^{k} \lambda_{i} v_{i}, \sum_{i=0}^{k} \lambda_{i}=1, \lambda_{i} \geq 0\right\}
$$

where non－degenerate means linearly independent，e．g．any 3 points are not collinear，any 4 points are not coplanar，／dots

Simplicial Complex - Simplex (cont.)

Definition (k-dimensional Simplex)
Suppose $k+1$ points $\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ are non-degenerate in $\mathbb{R}^{n}, n \geq k+1$, the standard simplex $\left[v_{0}, v_{1}, \ldots, v_{k}\right]$ is the minimal convex set including all of them,

$$
\sigma=\left[v_{0}, v_{1}, \ldots, v_{k}\right]=\left\{x \in \mathbb{R}^{n} \mid x=\sum_{i=0}^{k} \lambda_{i} v_{i}, \sum_{i=0}^{k} \lambda_{i}=1, \lambda_{i} \geq 0\right\}
$$

- we call $v_{0}, v_{1}, \ldots, v_{k}$ the vertices of the simplex σ.
- If $\tau \subset \sigma$ is also a simplex, then we say τ is a facet of σ.

Simplicial Complex

- Simplexes can be coherently glued together to form complexes.

Simplicial Complex

- Simplexes can be coherently glued together to form complexes.
- Definition (Simplicial Complex)

A simplicial complex Σ is a union of simplices, such that:

1. If a simplex σ belongs to Σ, then all its facets also belongs to $\Sigma ;$
2. If $\sigma_{1}, \sigma_{2} \subset K, \sigma_{1} \bigcap \sigma_{2} \neq \emptyset$, then the intersection of σ_{1} and σ_{2} is also a common facet.

Simplicial Complex

- Simplexes can be coherently glued together to form complexes.
- Definition (Simplicial Complex)

A simplicial complex Σ is a union of simplices, such that:

1. If a simplex σ belongs to Σ, then all its facets also belongs to Σ;
2. If $\sigma_{1}, \sigma_{2} \subset K, \sigma_{1} \bigcap \sigma_{2} \neq \emptyset$, then the intersection of σ_{1} and σ_{2} is also a common facet.

- Triangular meshes are simplicial complexes (vertex, oriented edges, and oriented faces are 0 -simplexes, 1 -simplexes, and 2-simplexes respectively).

Neighborhoods in Simplicial Complex

Given a simplicial complex K, and a simplex $s \in K$

- $\operatorname{star}(s, K)=\left\{s^{\prime} \in K \mid s \subset s^{\prime}\right\} ;$

Neighborhoods in Simplicial Complex

Given a simplicial complex K, and a simplex $s \in K$

- $\operatorname{star}(s, K)=\left\{s^{\prime} \in K \mid s \subset s^{\prime}\right\} ;$
- $\overline{\operatorname{star}}(s, K)=\left\{s^{\prime} \in K \mid \exists r \in \operatorname{star}(s, K), s^{\prime} \in r\right\}$;

Neighborhoods in Simplicial Complex

Given a simplicial complex K, and a simplex $s \in K$

- $\operatorname{star}(s, K)=\left\{s^{\prime} \in K \mid s \subset s^{\prime}\right\} ;$
- $\overline{\operatorname{star}}(s, K)=\left\{s^{\prime} \in K \mid \exists r \in \operatorname{star}(s, K), s^{\prime} \in r\right\}$;
- $\operatorname{link}(s, K)=\overline{\operatorname{star}}(s, K) \backslash \operatorname{star}(s, K)$.

Neighborhoods in Simplicial Complex

Given a simplicial complex K, and a simplex $s \in K$

- $\operatorname{star}(s, K)=\left\{s^{\prime} \in K \mid s \subset s^{\prime}\right\} ;$
- $\overline{\operatorname{star}}(s, K)=\left\{s^{\prime} \in K \mid \exists r \in \operatorname{star}(s, K), s^{\prime} \in r\right\}$;
- $\operatorname{link}(s, K)=\overline{\operatorname{star}}(s, K) \backslash \operatorname{star}(s, K)$.

(b) on an edge

Barycentric Coordinates

- A simplex is the smallest convex set containing its vertices.
- These $\left\{\lambda_{i}\right\}$, satisfying

$$
\lambda_{i}>0, \sum_{i=0}^{n} \lambda_{i}=1
$$

are called barycentric coordinates.

- Each set $\left(\lambda_{0}, \ldots, \lambda_{n}\right)$ determines a unique point in the n dimensional simplex.
- interior of a simplex $\rightarrow \forall \lambda_{i}>0$;
- boundary of a simplex $\rightarrow \exists \lambda_{i}=0$;

Computing Barycentric Coordinates

- Given a point v inside a simplex s, how do we compute its barycentric coordinates?
- If s is an edge $\left[v_{1}, v_{2}\right]$, easy.
- If s is a face $\left[v_{1}, v_{2}, v_{3}\right]$:
- $v=\sum_{i=1}^{3} \lambda_{i} v_{i}, \sum_{i=1}^{3} \lambda_{i}=1, \lambda_{1}, \lambda_{2}, \lambda_{3}>0$,
- then we have $\lambda_{3}=1-\lambda_{1}-\lambda_{2}$;
- look at a local 2D coordinate system defined on the face $\left[v_{1}, v_{2}, v_{3}\right]:$

$$
\left\{\begin{array}{l}
x=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\left(1-\lambda_{1}-\lambda_{2}\right) x_{3} \tag{1}\\
y=\lambda_{1} y_{1}+\lambda_{2} y_{2}+\left(1-\lambda_{1}-\lambda_{2}\right) y_{3}
\end{array}\right.
$$

Computing Barycentric Coordinates (cont.)

$$
\begin{align*}
& \Rightarrow\left\{\begin{array}{l}
\lambda_{1}\left(x_{1}-x_{3}\right)+\lambda_{2}\left(x_{2}-x_{3}\right)+\left(x_{3}-x\right)=0 \\
\lambda_{1}\left(y_{1}-y_{3}\right)+\lambda_{2}\left(y_{2}-y_{3}\right)+\left(y_{3}-y\right)=0
\end{array}\right. \tag{2}\\
& \Rightarrow\left[\begin{array}{ll}
\left(x_{1}-x_{3}\right) & \left(x_{2}-x_{3}\right) \\
\left(y_{1}-y_{3}\right) & \left(y_{2}-y_{3}\right)
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{l}
x-x_{3} \\
y-y_{3}
\end{array}\right] \tag{3}
\end{align*}
$$

- the matrix has the inverse (since $v_{1}-v_{3}$ and $v_{2}-v_{3}$ are linear independent) $M^{-1}=$

$$
\frac{1}{\left(x_{1}-x_{3}\right)\left(y_{2}-y_{3}\right)-\left(x_{2}-x_{3}\right)\left(y_{1}-y_{3}\right)}\left[\begin{array}{cl}
\left(y_{2}-y_{3}\right) & -\left(y_{1}-y_{3}\right) \\
-\left(x_{2}-x_{3}\right) & \left(x_{1}-x_{3}\right)
\end{array}\right]
$$

Computing Barycentric Coordinates (cont.)

$$
\begin{align*}
& \Rightarrow\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=M^{-1}\left[\begin{array}{l}
\left(x-x_{3}\right) \\
\left(y-y_{3}\right)
\end{array}\right] \tag{5}\\
& \Rightarrow\left\{\begin{array}{l}
\lambda_{1}=\frac{\left(x-x_{3}\right)\left(y_{2}-y_{3}\right)-\left(x_{2}-x_{3}\right)\left(y-y_{3}\right)}{\left(x_{1}-x_{3}\right)\left(y_{2}-y_{3}\right)-\left(x_{2}-x_{3}\right)\left(y_{1}-y_{3}\right)} \\
\lambda_{2}=\cdots \\
\lambda_{3}=\cdots
\end{array}\right. \tag{6}
\end{align*}
$$

Computing Barycentric Coordinates (cont.)

The denominator:

$$
\left(x_{1}-x_{3}\right)\left(y_{2}-y_{3}\right)-\left(x_{2}-x_{3}\right)\left(y_{1}-y_{3}\right)=\frac{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)}{y}
$$

Twice the signed area of triangle $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)$

Similarly, the numerator $\left(x-x_{3}\right)\left(y_{2}-y_{3}\right)-\left(x_{2}-x_{3}\right)\left(y-y_{3}\right)$
is twice the signed area of triangle $\left((x, y),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)$
$\lambda_{1}=\operatorname{Area}\left(\mathrm{v}, \mathrm{v}_{2}, \mathrm{v}_{3}\right) / \operatorname{Area}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{~V}_{3}\right)$

Computing Barycentric Coordinates (cont.)

- Now back to 3D, these computations are easy.
- Given three vertices v_{1}, v_{2}, v_{3}, and a vertex v, we can compute $\operatorname{Area}\left(\Delta\left(v_{1}, v_{2}, v_{3}\right)\right)$ and $\operatorname{Area}\left(\Delta\left(v, v_{2}, v_{3}\right)\right.$ by vector cross-products.
- Therefore, every point p on the triangle mesh K can now be uniquely represented. p can be a vertex, a point on an edge, or a point inside a triangle.

