Surface Parameterization

Problem Definition

Recall the Texture Mapping that wrap an Image onto a mesh

- A one-to-one map from geometry shape S to a texture image (2D domain) D
- D here is a rectangular domain, e.g. $D = [0,1] \times [0,1]$
- The mapping: a vector function $\vec{f}: S \to D \subset \mathbb{R}^2$, composed by two scalar function f_u and f_v .
- ⇔Define a "u-v" coordinates over the surface S.
- Infinite mapping ways, which one is good?

Motivations

- <u>Texture mapping</u>: generating enhanced effects over simple geometry shapes
 - From geometry space to the texture (image) space
 - \rightarrow surface mapping
 - Quality of the mapping: dictates the effect of texture mapping (low distortion preferred)
- <u>Spline Representation</u>: a compact representation, good for precise computer aided design, and scientific computing
 - For spline fitting : a good parameterization is important for generating smooth spline with small # of control points

Historical Background

- Cartography
- Distortion: angles and areas distortion
 - Isometry: no distortion
 - Not all surfaces has the isometry to a planar region
 - Peeling oranges \rightarrow can't be of no distortion
- Ptolemy was the first known to produce the data for creating a map showing the world (100-150AD)
 - [Geography] \rightarrow project a sphere by longitude and latitude

Historical Background (cont.)

(a) Orthographic; (b) stereographic;

(c) Mercator; and

(d) Lambert

- (a) The orthographic projection (Egyptians and Greeks, > 2000 years ago) → modifies both angles and areas
- (b) Stereographic projection (Hipparchus, 190-120B.C.) → preserves angles, not areas
- (c) Mercator projection (Mercator 1569) \rightarrow preserves angles, not areas
- (d) Lambert projection (Lambert 1772) \rightarrow preserves areas, not angles

Good "UV" versus bad "UV"?

- What do we look for? What do we preserve?
- Should we map it onto a rectangle? Or a disk? Or something awkward? What do we choose?
- If the target shape is fixed (e.g. a rectangle, or a disk...), what is the best mapping then?
- At this beginning stage:
 - □ Source: a genus-zero open surface (a topological disk)
 - Target: planar square

Mapping Criteria

- Angle Distortion: change of the local angles
 - Conformal mapping: no angle distortion (locally, a right angle → a right angle, or a circle → a circle), preserving shape information
- Area Distortion: change of the local area
 - Equiareal mapping: no area change
- Isometric Mapping: neither angles nor area distortion
- Isometric 🗇 conformal + equiareal
- Isometry exists between a given surface and a planar domain, only if this surface is "developable"
- Purely Equiareal Mapping is infinitely dimensional and not necessarily useful

Mapping Criteria

• Therefore:

Given an arbitrary topological disk surface and a planar domain

- Isometric mapping rarely exists
- Conformal mapping always exists (Riemann Mapping Theorem)
- Infinitely many equiareal mapping, as a pure criterion, not easy to control and design

Flattening Triangle Mesh

- An intuitive way : considering that you are flattening a triangle mesh (deforming it and make it flat)
 - 1) Pin vertices on the boundary loop on a planar rectangle boundary
 - 2) Move the interior vertices into the rectangle properly

Algorithm Pipeline:

computing two harmonic functions $f_u: (x,y,z) \rightarrow u$, and $f_v: (x,y,z) \rightarrow v$ 1) For boundary vertices, map them to one of the following four segments

- a) u=0, 0<v<1;
- b) 0<u<1, v=0;
- c) u=1,0<v<1;
- d) 0<u<1,v=1.

Flattening Triangle Mesh

- An intuitive way : considering that you are flattening a triangle mesh (deforming it and make it flat)
 - 1) Pin vertices on the boundary loop on a planar rectangle boundary
 - 2) Move the interior vertices into the rectangle properly

Algorithm Pipeline:

computing two harmonic functions $f_u: (x,y,z) \rightarrow u$, and $f_v: (x,y,z) \rightarrow v$ 1) For each interior vertex, map it to 0 < u < 1, 0 < v < 1

there should not be flip-over, every vertex v_i should be mapped into

the interior region of its one ring vertices v_i .

Flatten 3D Mesh by Harmonic Map

Flattening = Finding the smoothest function that minimizes its variance (minimize the magnitude of the change)

$$E(f) = \frac{1}{2} \int_{S} \left\| \nabla f \right\|^{2} dx \tag{1}$$

 \rightarrow Called the harmonic energy

- A function that minimizes this energy is called a harmonic function
 - □ It satisfies $\Delta f(x) = 0, \forall x \in S$

It is uniquely determined by the boundary condition

Harmonic Function Examples:

□ 1D Curve:

Given: $f(x_0)=y_0, f(x_1)=y_1$

The harmonic function f(x) is uniquely defined, and can be computed by minimizing E in (1)

(2)

Harmonic Function (1D)

- Harmonic Function Examples:
 - □ 1D Curve:

Given: $f(x_0)=y_0, f(x_1)=y_1$

The harmonic function f(x) is uniquely defined, and can be computed by minimizing E in (1)

 \square Property of a harmonic function f(x), (the red curve)

Mean-value principle :

$$f(x) = \frac{1}{2\varepsilon} \int_{|y-x|<\varepsilon} f(y) dy, \forall x, y \in S$$

function value on a point is the average of values of it surrounding points

- \rightarrow we use this to numerically compute the function (later)
- Maximal principle :

Maximal/minimal function values only exist on the boundary

Flatten 3D Mesh by Harmonic Map

□ Flatten a 2D variable function f(u,v), similarly minimize the harmonic energy $E(f) = \frac{1}{2} \int_{(u,v) \in S} ||\nabla f||^2 du dv$

□ It is equivalent to solving $\Delta f(u,v) = (\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}) f(u,v) = 0, \forall u,v \in S$

If the boundary conditions:

(1) If
$$f(u,v)|_{\partial S} = C \rightarrow f(u,v) = C, \forall (u,v) \in S$$

(2) If $f(u,v)|_{\partial S} = \partial D \rightarrow f(u,v) \in D, \forall (u,v) \in S$

Mapping Mesh To Square

- A physical model:
 - Edges of the triangle mesh are springs (spring network)
 - Fix the boundary on the plane
 - Relax the interior of this network
 - Physical law being the only rule
 - Stabilized position \rightarrow mapping for the interior vertices
- A mesh with n+b (interior: 1.. n, boundary: n+1...n+b) vertices:
 - The rest string length $\rightarrow 0$
 - Potential energy $\rightarrow (Ds^2)/2$, (D-constant, s-final string length)
 - Boundary vertices $p_i \rightarrow u_i$ (2d-vector u_i)
 - Minimize spring energy:

$$E = \frac{1}{2} \sum_{i=1}^{n+b} \sum_{j \in N_i} \frac{1}{2} D_{ij} \| \boldsymbol{u}_i - \boldsymbol{u}_j \|^2,$$

where $D_{ij} = D_{ji}$ is the spring constant of the spring between p_i and p_j

Mesh Mapping (cont.)

• To find the minimized solution:

$$\frac{\partial E}{\partial u_i} = \sum_{j \in N_i} D_{ij} (u_i - u_j) = 0 \qquad \qquad \sum_{j \in N_i} D_{ij} u_i = \sum_{j \in N_i} D_{ij} u_j$$
(for any interior vertex i=1...n)

• Remove boundary points from the left to right hand side:

$$\boldsymbol{u}_{i} - \sum_{j \in N_{i}, j \leq n} \lambda_{ij} \boldsymbol{u}_{j} = \sum_{j \in N_{i}, j > n} \lambda_{ij} \boldsymbol{u}_{j}, \qquad \lambda_{ij} = \frac{D_{ij}}{\sum_{j \in N_{i}} D_{ij}}$$

• Lead to two sparse linear systems (in two axis directions):

$$AU = \overline{U} \quad \text{and} \quad AV = \overline{V},$$

$$\overline{u}_i = \sum_{j \in N_i, j > n} \lambda_{ij} u_j \quad \text{and} \quad \overline{v}_i = \sum_{j \in N_i, j > n} \lambda_{ij} v_j$$

$$A = (a_{ij})_{i,j=1,\dots,n} \quad : \quad a_{ij} = \begin{cases} 1 & \text{if } i = j, \\ -\lambda_{ij} & \text{if } j \in N_i, \\ 0 & \text{otherwise.} \end{cases}$$

$$(3)$$

(1) Boundary Mapping

- No fold-over → direct projection may not work
- Flatten a curve:
 - a) Choosing the shape of the planar domain boundary
 - b) Choosing the distribution of the points on the boundary
- a) Boundary Shape: Usually rectangle, circle, etc.
 - Convex shape \rightarrow bijectivity guarantees for many weights
 - Larger distortion when surface is highly concave
 - Choose square here
- b) Distribution: Usually uniform length, chord length, ...
 - Uniform distribution: works for well (uniformly) sampled data
 - Chord length: working well in most cases

(2) Interior Mapping- different weights

Different D_{ij}:

- Wachspress coordinates:
 - Earliest generalization of barycentric coordinates
 - Mainly used in finite element methods
- Harmonic coordinates:
 - Standard piecewise linear approximation to Laplace equation
 - Minimizing deformation energy
- Mean value coordinates:
 - Discretizing mean value theorem of harmonic function
 - Positive weights guaranteed, stable parameterization

 $w_{ij} = \frac{\cot \alpha_{ji} + \cot \beta_{ij}}{r_{ij}^2}$

 $w_{ij} = \cot \gamma_{ij} + \cot \gamma_{ji}$

$$w_{ij} = \frac{\tan\frac{\alpha_{ij}}{2} + \tan\frac{\beta_{ji}}{2}}{r_{ij}}$$

It has been proved that: Any symmetric weights $(w_{ij}=w_{ji})$ minimizes a spring energy.

Three different popular formula

- Graph Embedding: [Tutte 1963]
- Discrete Harmonic Mapping: [Eck 1995]
- Meanvalue Coordinates: [Floater 1997]

Three different popular formula

• On another surface:

Bimba Surface

Mean Value

Graph Embedding

Harmonic

Carefully Read & Understand Previous SlidesThe following materials/slides are optional

- Visually, we can tell the difference.
- But how do we measure the distortion numerically? And where do these weight formula come from?
 - E.g. why the harmonic mapping looks conformal?
- How do we design (or choose to use) a mapping technique?
 - E.g. shall we always use harmonic?
- Purely Conformal or a Balance?
 - Applications needs angle-preserving
 - Applications that also needs area-preserving
- How about more general surfaces?
 - Closed Genus-O surfaces → spherical mapping
 - Higher genus surfaces → global parameterization
 - Surface to surface → inter-surface mapping

Differential Geom. Background

• A surface $S \subset \mathbb{R}^3$ (2-manifold), has the parametric representation:

$$\mathbf{x}(u^1, u^2) = (x_1(u^1, u^2), x_2(u^1, u^2), x_3(u^1, u^2))$$

for points (u^1, u^2) in some domains in \mathbb{R}^2

- A representation is <u>regular</u> if
 - i. The functions x_1, x_2, x_3 are smooth (differentiable when we need) ii. The vectors $\mathbf{x}_1 = \frac{\partial \mathbf{x}}{\partial u^1}$, $\mathbf{x}_2 = \frac{\partial \mathbf{x}}{\partial u^2}$ are linearly independent
- 1st fundamental form (quadratic inner product on the tangent space):
 → permits the calculation of surface metric

$$ds^{2} = \mathbf{x}_{1} \cdot \mathbf{x}_{1} (du^{1})^{2} + 2 \mathbf{x}_{1} \cdot \mathbf{x}_{2} du^{1} du^{2} + \mathbf{x}_{2} \cdot \mathbf{x}_{2} (du^{2})^{2}$$

denoting $g_{\alpha\beta} = \mathbf{x}_{\alpha} \cdot \mathbf{x}_{\beta}, \qquad \alpha = 1, 2, \quad \beta = 1, 2,$

We have
$$ds^2 = (du^1 du^2) \mathbf{I} \begin{pmatrix} du^1 \\ du^2 \end{pmatrix}$$
, where $\mathbf{I} = \begin{pmatrix} g_{11} & g_{12} \\ g_{12} & g_{22} \end{pmatrix}$

Differential Geom. Background (cont.)

f is <u>allowable</u> if the parameterizations x and x^* are both regular.

Isometric mappings

Isometric ⇔ length-preserving

(e.g. cylinder \rightarrow plane (cylindrical coordinates \rightarrow Cartesian coordinates))

Theorem 1. An allowable mapping from S to S^* is isometric if and only if the coefficients of the first fundamental forms are the same, i.e.,

 $\mathbf{I}=\mathbf{I}^{*}.$

Under an isometry:

- Curve-lengths don't change
- Angles don't change
- Areas don't change
- Gaussian curvatures don't change

Conformal mappings

Conformal \Leftrightarrow angle-preserving

(e.g. stereographic and Mercator projections)

Theorem 2. An allowable mapping from S to S^* is conformal or anglepreserving if and only if the coefficients of the first fundamental forms are proportional, i.e.,

$$\mathbf{I} = \eta(u^1, u^2) \,\mathbf{I}^*,\tag{1}$$

for some scalar function $\eta \neq 0$.

Under an conformal map:

Angles don't change

 \Box Circle \rightarrow another circle (only scaling allowed)

Equiareal mappings

Equiareal \Leftrightarrow area-preserving (e.g. Lambert projections)

Theorem 3. An allowable mapping from S to S^* is equiareal if and only if the discriminants of the first fundamental forms are equal, i.e.,

$$g = g^*. \tag{2}$$

(Note that: $g = \det \mathbf{I} = g_{11}g_{22} - g_{12}^2$)

Theorem 4. Every isometric mapping is conformal and equiareal, and every conformal and equiareal mapping is isometric, i.e.,

isometric \Leftrightarrow conformal + equiareal.

An example: planar mappings

A planar mapping is a special type of the surface mapping:

$$f: \mathbb{R}^2 \to \mathbb{R}^2, f(x, y) = (u(x, y), v(x, y))$$

its 1st fundamental form: $I = J^T J$ where $J = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$ is the Jacobian of f.

Proposition 1. For a planar mapping $f : \mathbb{R}^2 \to \mathbb{R}^2$ the following equivalencies hold:

- 1. f is isometric \Leftrightarrow $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow \frac{\lambda_1 = \lambda_2 = 1}{\lambda_1 / \lambda_2 = 1}$ 2. f is conformal \Leftrightarrow $\mathbf{I} = \begin{pmatrix} \eta & 0 \\ 0 & \eta \end{pmatrix} \Leftrightarrow \frac{\lambda_1 / \lambda_2 = 1}{\lambda_1 / \lambda_2 = 1}$ 3. f is equiareal \Leftrightarrow det $\mathbf{I} = 1 \Leftrightarrow \lambda_1 / \lambda_2 = 1$

eigenvalues of **I**

Conformal→Harmonic

A conformal mapping

- a complex function satisfies the Cauchy-Riemann equation:

A harmonic mapping

- a complex function satisfies these two Laplace equations

Isometric → Conformal → Harmonic

Harmonic Mapping

Easy to compute, easy to approximate

- Guaranteed existence (when suitable boundary mapping is provided)
- Minimizing deformation (minimizing the Dirichlet energy)

Theorem 5 (RKC). If $f: S \to \mathbb{R}^2$ is harmonic and maps the boundary ∂S homeomorphically into the boundary ∂S^* of some convex region $S^* \subset \mathbb{R}^2$, then f is one-to-one;

Conformality depends on the boundary condition
 One-sidedness

Harmonic Map & its Intuition

Minimizing deformation

$$E_D(f) = \frac{1}{2} \int_S \|\text{grad}f\|^2 = \frac{1}{2} \int_S \left(\|\nabla u\|^2 + \|\nabla v\|^2\right)$$

-- minimize the magnitude of the change

- Intuitive explanation
 - 🗆 1D
 - 🗆 2D
 - 🗆 3D

Harmonic Map on Mesh

Following the smooth case definition \rightarrow discrete setting:

$$E(f) = \int_{S} ||\nabla f||^2 \, ds = \sum_{\Delta \in F} \langle \nabla f_{\Delta}, \nabla f_{\Delta} \rangle A_{\Delta}$$

 \Box Look at one triangle (V_1, V_2, V_3) :

Define: $S_i = n \times (V_{i+2} - V_{i+1})$ Normalized normal

index mod 3

We have: $S_0 + S_1 + S_2 = n \times (V_2 - V_1 + V_0 - V_2 + V_1 - V_0) = 0$ $\blacklozenge < S_i, S_i > = < S_i, -\sum_{i \neq i} S_j > = -\sum_{i \neq i} < S_i, S_i >$

An interior point V can be represented by barycentric coordinates:

$$V = \sum_{i} \lambda_{i} V_{i}, \quad \lambda_{i} = A_{i} / A \quad \text{and} \quad A_{i} = \frac{1}{2} |VV_{i+1}|| V_{i+1} V_{i+2} |\sin(\angle VV_{i+1}V_{i+2}) = \langle -S_{i}, V_{i+1} - V \rangle$$

Linear function: $f(V) = \sum_{i} f(\lambda_{i}V_{i}) = \sum_{i} \lambda_{i} f(V_{i}) = \sum_{i} \frac{f(V_{i})}{2A} \langle S_{i}, V \rangle - \sum_{i} \frac{f(V_{i})}{2A} \langle S_{i}, V_{i+1} \rangle$

$$\nabla f(V) = \sum_{i} \frac{1}{2A} f_{i} S_{i}, \quad f_{i} \leftarrow f(V_{i})$$

Harmonic Map on Mesh (cont.)

$$The local energy: < \nabla f_{\Delta}, \nabla f_{\Delta} > A = \frac{1}{4A} < \sum_{i} f_{i}S_{i}, \sum_{j} f_{j}S_{j} > = \frac{1}{4A} (\sum_{i} f_{i}^{2} < S_{i}, S_{i} > + 2\sum_{i < j} f_{i}f_{j} < S_{i}, S_{j} >) (because < S_{i}, S_{i} > = -\sum_{j \neq i} < S_{i}, S_{j} >) = \frac{1}{4A} (-f_{0}^{2} (< S_{0}, S_{1} > + < S_{0}, S_{2} >)... + 2\sum_{i < j} f_{i}f_{j} < S_{i}, S_{j} >) = \frac{-1}{4A} ((f_{0} - f_{1})^{2} < S_{0}, S_{1} > +...) = \frac{-1}{4A} \sum_{i < j} (f_{i} - f_{j})^{2} < S_{i}, S_{j} >$$

Harmonic Map on Mesh (cont.)

Total discrete harmonic energy:

$$E(f) = \frac{1}{2} \sum_{halfedge(i,j)} w_{ij} (f_j - f_i)^2$$

It is minimized when

$$\frac{\partial E(f)}{\partial f_i} = \sum_{halfedge(i,j)} w_{ij}(f_j - f_i) = 0$$

$$f_i = \frac{\sum (ctg \theta_{ij} + ctg \theta_{ji})f_j}{\sum (ctg \theta_{ij} + ctg \theta_{ji})}$$

Cotangent Weights of Discrete Harmonic Map

The definition review

D Simply connected domain $\ \Omega \subset \mathbb{R}^2$

the unit square: $\Omega = \{(u, v) \in \mathbb{R}^2 : u, v \in [0, 1]\},$ or the unit disk: $\Omega = \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 \leq 1\},$

□ A continuous injection (no 2 distinct points → same point) $f : \Omega \to \mathbb{R}^3$ □ The image S of Ω under f → a surface

 $S=f(\Omega)=\{f(u,v):(u,v)\in\Omega\},$

f is a parameterization of S over the parameter domain Ω

 $\square \rightarrow f \text{ is a bijection between } \Omega \text{ and } S \rightarrow f^{-1}: S \rightarrow \Omega$

Surface Examples (1)

Simple linear function:

$$\begin{array}{ll} parameter \ domain: & \Omega = \{(u,v) \in \mathbb{R}^2: u,v \in [0,1]\} \\ & surface: & S = \{(x,y,z) \in \mathbb{R}^3: x,y,z \in [0,1], x+y=1\} \\ & parameterization: & f(u,v) = (u,1-u,v) \\ & inverse: & f^{-1}(x,y,z) = (x,z) \end{array}$$

Surface Examples (2)

Cylinder:

$$\begin{array}{ll} parameter \ domain: & \Omega = \{(u,v) \in \mathbb{R}^2 : u \in [0,2\pi), v \in [0,1]\}\\ & surface: & S = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 = 1, z \in [0,1]\}\\ & parameterization: & f(u,v) = (\cos u, \sin u, v)\\ & inverse: & f^{-1}(x,y,z) = (\arccos x,z) \end{array}$$

Surface Examples (3)

Hemisphere (orthographic definition):

 $\begin{array}{ll} \textit{parameter domain:} & \Omega = \{(u,v) \in \mathbb{R}^2 : u^2 + v^2 \leq 1\} \\ & \textit{surface:} & S = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z \geq 0\} \\ & \textit{parameterization:} & f(u,v) = (u,v,\sqrt{1-u^2-v^2}) \\ & \textit{inverse:} & f^{-1}(x,y,z) = (x,y) \end{array}$

Surface Examples (4)

Hemisphere (stereographic definition):

 $\begin{array}{ll} parameter \ domain: & \Omega = \{(u,v) \in \mathbb{R}^2 : u^2 + v^2 \leq 1\} \\ & surface: & S = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z \geq 0\} \\ parameterization: & f(u,v) = (\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{1-u^2-v^2}{1+u^2+v^2}) \\ & inverse: & f^{-1}(x,y,z) = (\frac{x}{1+z}, \frac{y}{1+z}) \end{array}$

Reparameterization

Example (3) and (4):

 \rightarrow There can be more than one parameterizations of S over Ω

 $\square \text{ Any bijection } \varphi: \Omega \to \Omega$

induces a reparameterization: $g = f \circ \varphi$

 \Box Exercise: write the reparameterization $\varphi(u, v)$ between (3) and (4)

(3)
$$f(u,v) = (u, v, \sqrt{1 - u^2 - v^2})$$

 \checkmark $\varphi(u,v) =?$
(4) $f(u,v) = (\frac{2u}{1 + u^2 + v^2}, \frac{2v}{1 + u^2 + v^2}, \frac{1 - u^2 - v^2}{1 + u^2 + v^2})$

Surface Mapping Optimization Procedure = Reparameterization Procedure

Intrinsic Surface Properties

Intrinsic and extrinsic

- □ → intrinsic: about the shape itself, not about its representation and location
- Intrinsic property examples: curvature (Gaussian, mean), normal

Tangent Plane: spanned by
$$f_u = \frac{\partial f}{\partial u}$$
 and $f_v = \frac{\partial f}{\partial v}$
Surface Normal: $n_f = \frac{f_u \times f_v}{\|f_u \times f_v\|}$

Example (orthographic hemisphere):

$$f(u,v) = (u,v,\sqrt{1-u^2-v^2}) \qquad f_u(u,v) = (1,0,\frac{-u}{\sqrt{1-u^2-v^2}}) \qquad \text{(same with} \\ f_v(u,v) = (0,1,\frac{-v}{\sqrt{1-u^2-v^2}}) \qquad n_f(u,v) = (u,v,\sqrt{1-u^2-v^2}) = (x,y,z) \qquad \text{(same with} \\ \text{stereographics)}$$

 \rightarrow Following our intuition: normal is independent of the parameterization (intrinsic property)

1st Fundamental Form and Surface Area

Area of a surface is intrinsic too

D The first fundamental form $\mathbf{I}_f = \begin{pmatrix} f_u \cdot f_u & f_u \cdot f_v \\ f_v \cdot f_u & f_v \cdot f_v \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$

□ Area element: $dA = |f_u \times f_v| dudv = \sqrt{(f_u \cdot f_u)(f_v \cdot f_v) - (f_u \cdot f_v)^2} dudv = \sqrt{EG - F^2} dudv$

Example: Area of a unit hemisphere (orthographic parameterization)

$$f(u, v) = (u, v, \sqrt{1 - u^2 - v^2})$$
$$EG - F^2 = \frac{1}{1 - u^2 - v^2}$$

Exercise:

Area under stereographic parameterization

Intrinsic property: Area is independent of the parameterization

$$\begin{split} A(S) &= \int_{-1}^{1} \int_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} \frac{1}{\sqrt{1-u^2-v^2}} \, du \, dv \\ &= \int_{-1}^{1} \left[\arcsin \frac{u}{\sqrt{1-v^2}} \right]_{-\sqrt{1-v^2}}^{\sqrt{1-v^2}} \, dv \\ &= \int_{-1}^{1} \pi \, dv \\ &= 2\pi, \end{split}$$

Metric Distortion

□ Look at surface point f(u,v), move a little away from (u,v): Displacement: $(\Delta u, \Delta v) \rightarrow$ new point: $f(u + \Delta u, v + \Delta v)$ approximated by 1st order Taylor expansion: $\tilde{f}(u + \Delta u, v + \Delta v) = f(u, v) + f_u(u, v)\Delta u + f_v(u, v)\Delta v$

Planar local region: the vicinity of u = (u, v)Region on tangent plane T_p at $p = f(u, v) \in S$

 $\tilde{f}(u + \Delta u, v + \Delta v) = \mathbf{p} + J_f(\mathbf{u}) \begin{pmatrix} \Delta u \\ \Delta v \end{pmatrix}$ where $J_f = (f_u \ f_v)$ is the Jacobian of f

Metric Distortion (cont.)

- (1) 2D Rotation V \rightarrow planar rotation around **u**;
- (2) Stretching matrix $\Sigma \rightarrow$ stretches by factor σ_1 and σ_2 in the u and v directions;
- (3) 3D rotation U \rightarrow map the planar region onto the tangent plane

Tiny sphere with radius-r \rightarrow ellipse with semi-axes of length $r\sigma_1$ and $r\sigma_2$

$\sigma_1 = \sigma_2 \longrightarrow$	Local scaling, circles to circles	:	Confomal
$\sigma_1 \sigma_2 = 1 \longrightarrow$	Area preserved	:	Equiareal

Metric Distortion (cont.)

Singular values of any matrix A are the square roots of the matrix $A^T A$

Look at
$$J_f^T J_f$$
 $J_f^T J_f = \begin{pmatrix} f_u^T \\ f_v^T \end{pmatrix} (f_u f_v) = \mathbf{I}_f = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$

The symmetric 2*2 matrix's eigenvalues:

$$\lambda_{1,2} = \frac{1}{2} \left((E+G) \pm \sqrt{4F^2 + (E-G)^2} \right)$$

isometric \iff conformal + equiareal

Metric Distortion Example

(1) Cylinder

parameterization: $f(u, v) = (\cos u, \sin u, v)$ Jacobian: $J_f = \begin{pmatrix} \cos u & 0 \\ -\sin u & 0 \\ 0 & 1 \end{pmatrix}$ \Box first fundamental form: $\mathbf{I}_f = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ eigenvalues: $\lambda_1 = 1$, $\lambda_2 = 1$ Isometry

Metric Distortion Example

(2) Hemisphere (stereographic)

Metric Distortion Example

(3) Hemisphere (orthographic)

Minimizing Metric Distortion

Overall distortion of a parameterization f can be generally defined by:

$$\bar{E}(f) = \int_{\Omega} E(\sigma_1(u, v), \sigma_2(u, v)) \, du \, dv \Big/ A(\Omega)$$

Minimizing $\bar{E}(f)$ over the space of all admissible parameterizations \rightarrow best parameterization

Discretely, we look at linear function f: from parameter triangles $t \in \Omega$ to surface triangles $T \in T$

$$\bar{E}(f) = \sum_{t \in \Omega} E(\sigma_1^t, \sigma_2^t) A(t) \Big/ \sum_{t \in \Omega} A(t)$$

Or we can look at inverse function g=f⁻¹: $\sigma_1^T = 1/\sigma_2^t$ and $\sigma_2^T = 1/\sigma_1^t$

$$\bar{E}(g) = \sum_{T \in \mathcal{T}} E(\sigma_1^T, \sigma_2^T) A(T) \Big/ \sum_{T \in \mathcal{T}} A(T)$$

Minimizing Metric Distortion (cont.)

 $\begin{aligned} A(t) &= \frac{1}{2} \det(\boldsymbol{u}_1 - \boldsymbol{u}_0, \boldsymbol{u}_2 - \boldsymbol{u}_0) \qquad A(T) = \frac{1}{2} \|(\boldsymbol{p}_1 - \boldsymbol{p}_0) \times (\boldsymbol{p}_2 - \boldsymbol{p}_0)\| \\ (\sigma_1^t)^2 + (\sigma_2^t)^2 &= \frac{1}{A(t)^2} \sum_{i=0}^2 \|\boldsymbol{u}_{i+2} - \boldsymbol{u}_{i+1}\|^2 \big[(\boldsymbol{p}_{i+1} - \boldsymbol{p}_i) \cdot (\boldsymbol{p}_{i+2} - \boldsymbol{p}_i) \big] \\ \sigma_1^t \sigma_2^t &= \frac{A(T)}{A(t)} \\ (\sigma_1^T)^2 + (\sigma_2^T)^2 &= \frac{1}{A(T)^2} \sum_{i=0}^2 \|\boldsymbol{u}_{i+2} - \boldsymbol{u}_{i+1}\|^2 \big[(\boldsymbol{p}_{i+1} - \boldsymbol{p}_i) \cdot (\boldsymbol{p}_{i+2} - \boldsymbol{p}_i) \big] \\ \sigma_1^T \sigma_2^T &= \frac{A(t)}{A(T)}, \end{aligned}$

Minimizing Metric Distortion (cont.)

Discrete Harmonic Map [Pinkall EM'93] [Eck SIG'95]:

Least Square Conformal Map [Desbrun SIG'02] [Levy SIG'02]:

$$E_{\rm D}(\sigma_1, \sigma_2) = \frac{1}{2} (\sigma_1^2 + \sigma_2^2)$$

$$E_{\rm C}(\sigma_1, \sigma_2) = \frac{1}{2}(\sigma_1 - \sigma_2)^2$$

$$E_{\rm D}(\sigma_1, \sigma_2) - E_{\rm C}(\sigma_1, \sigma_2) = \sigma_1 \sigma_2$$

$$\bar{E}_{\mathrm{D}}(g) - \bar{E}_{\mathrm{C}}(g) = \sum_{t \in \Omega} A(t) \Big/ \sum_{T \in \mathcal{T}} A(T) = \frac{A(\Omega)}{A(S_{\mathcal{T}})}$$

Therefore, if we take a conformal map, fix its boundary and thus the area of the parameter domain Ω , and then compute the harmonic map with this boundary, then we get the same mapping, which illustrates the well-known fact that any conformal mapping is harmonic, too.

Minimizing Metric Distortion (cont.)

Conformal Mapping: \rightarrow try to make $\sigma_1 = \sigma_2$

 $E_{\rm C}(\sigma_1, \sigma_2) = \frac{1}{2}(\sigma_1 - \sigma_2)^2 \qquad E_{\rm D}(\sigma_1, \sigma_2) = \frac{1}{2}(\sigma_1^2 + \sigma_2^2)$

Another one: MIPS energy [Hormann 02]

- Advantage: (1) symmetry:
 (2) bijectivity
- Disadvantage: non-linear

$$E_{\mathrm{M}}(\sigma_1, \sigma_2) = \frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1} = \frac{{\sigma_1}^2 + {\sigma_2}^2}{\sigma_1 \sigma_2}$$

$$E_{\mathrm{M}}(\sigma_1^T, \sigma_2^T) = E_{\mathrm{M}}(\sigma_1^t, \sigma_2^t)$$

Many more about mapping...

- Free-boundary mapping
- Deforming the metric
- Global parameterization
- Inter-shape mapping

Application on meshing

With the parameterization, we can do Remeshing - to generate high quality mesh

