Progressive Meshes

Xin (Shane) Li

Progressive Meshes

- Motivations
- Progressive Triangular Meshes
- Connectivity
- Geometry
- Progressive Tetrahedral Meshes (Progressive Simplicial Complex)

Complex Meshes

Challenges:

- Expensive to store, transmit, render, and edit

Level of Detail

- Decreasing the complexity of a 3D object representation
- as it moves away from the viewer
- or based on other metrics (object importance, eyespace position...)
- Applied on geometry, texture, material...

69,451 polys

2,502 polys

251 polys

76 polys

Courtesy Stanford 3D Scanning Repository

Level of Detail

- Distant objects use coarser LODs:

Multiresolutional Modeling, Processing and Analysis

A webpage about Multiresolutional modeling by Michael Garland: http://www.cs.cmu.edu/afs/cs/user/garland/www/multires/index.html

- Subdivision Surface
- Spline
- Wavelet

Motivations

- Applications of multiresolution techniques: Compression, Progressive transmission and display, Level-of-detail Control, Multiresolution editing...
- A mesh simplification procedure for general input meshes
- Preserve various properties (colors, normals, ...)
- Lossless
- Continuous-resolution
- Efficient (time and space)
- Progressive transmission

Mesh Simplification

Level-of-detail (LOD)

Mesh simplification procedure

- Idea: apply sequence of edge collapses:

Can be easily implemented using Half-Edge Data Structure!

Simplification process

Invertible

Vertex split transformation:

Reconstruction process

vsplo
\ldots vspl $_{i} \ldots$
wspl $_{m-1}$
progressive mesh (PM) representation

Continuous-resolution LOD

From PM, extract M^{i} of any desired complexity.

3,478 faces?

Property: Vertex correspondence

Application: Smooth transitions

Correspondence is a surjection:

Video

Morphing by Linear Interpolation

- Source mesh M1=\{V1, ..., Vn\}
- Target mesh M2=\{U1, ..., Un\}
- The interpolated mesh :

$$
M(t)=\left\{V 1^{*}(1-t)+U 1^{\star} t, \ldots, V n^{\star}(1-t)+U n^{\star} t\right\}
$$

Application: Progressive transmission

Transmit records progressively:

Application: Selective refinement

(e.g. view frustum)

How to select edge collapses?

- Preserve appearance:
- geometric shape
- scalar fields (e.g. color)
- discontinuity curves

$$
\begin{aligned}
& E=\mathbb{X}\left(e_{\text {shape }}+e_{\text {scalars }}\right) d A+\mathbb{X}\left(e_{\text {disc }}\right) d L \\
& \Sigma_{\text {m }}
\end{aligned}
$$

Selecting edge collapses

- Greedy algorithm: always collapse edge resulting in smallest ΔE

Simplification rates: ~ 30 faces/sec
[Hoppe Siggraph 96]

- off-line process
- could use simpler heuristics

Summary

- single resolution

PM

- continuous-resolution
- smooth LOD
- space-efficient
- progressive

Videos

Summary

- Three issues that deserve more consideration:

1. Correctness Detection
2. Collapsing Edge Selection
3. New Vertex Position
1) Ideally: given n vertices \rightarrow best approximation
2) Practically: local optimization

Summary

- Bottom line:
- You got the concept and idea
- And with the half-edge data structure, you can make this whole thing work
- [Topologically Correctness] Shrink a complicated triangle mesh to a simple one, without changing Euler number
- [Geometrically Roughly Right] Keep using the averaged spatial position
- Consider its generalization to 3D...

Progressive Tetrahedral Meshes

Edge Collapse

Progressive Tetrahedral Meshes

Progressive Tetrahedral Meshes

Is "Edge Collapse" the only way?

Progressive Tetrahedral Meshes

Is "Edge Collapse" the only way?

Some applications

Inter-surface mapping and morphing

Some applications

Dynamic Collision Detection Video

And many more in visualization, vision, and CAGD...

