Lecture 6 - Geometry (1) Curves and Surfaces

Xin (Shane) Li Sep. 10th and Sep. 15th, 2009

Outline

- What are curves, surfaces, and solids?
- Continuous Case
 - Topology, Topological Space, Open Set
 - Topological Equivalence
 - Curves, Surfaces, Solids...
- Discrete Case
 - Simplicial Complex
 - Neighborhoods in the Discrete Case
- Topological Classification of Surfaces

What is it about?

- Key to understand and manipulate modeling, processing, and rendering shapes is to understand geometric shapes.
- Curves, surfaces, and solid shapes are three common concepts in our surrounding world.
- Curves can be in R¹, R², and R³, surfaces can be in R² and R³, what is the fundamental difference between curves and surfaces? Why do we keep saying a curve is "1D" and a surface is "2D"...

→ Topology

Topological Space

- Topological space = a set X + some structural relationship T defined on X
- Open Set: a subset U of X, if it belongs to T
- (X, T) is a topological space, we usually say: X is a topological space with topology T
- Neighborhoods of a point p in X
- Given a point set, different topologies can be defined

Topological Space → Curves, Surfaces...

- Homeomorphism
 - Geometric Intuition: topologically equivalent = geometrically stretching and bending an object continuously
 - Example
 - (1,2) and (3,5)
 - Continuous Deforming (Translation, Scaling,...) are homeomorphism.
- Topological space → "Analytically good" topological space Hausdorff space: if different points have disjoint neighborhoods
- A topological Hausdorff space is <u>a surface (2D-manifold)</u> if each point has a neighborhood homeomorphic to an open set of Euclidean space R² (*)
- Similarly, <u>curves (1D-manifolds)</u>, <u>solids (3D-manifolds)</u>, <u>solids</u>
 be defined

From Discrete Aspects

- A surface → represented by a triangular mesh [Simplicial Complex]
- Simplexes
 - 0-simplex (vertex): $v \in \mathbb{R}^n$.

• 1-simplex (edge):
$$(v_0, v_1) = \{\sum_{i=0}^{1} \lambda_i v_i : \sum_{i=0}^{1} \lambda_i = 1, \lambda_i \ge 0\}$$

• 2-simplex (face):
$$(v_0, v_1, v_2) = \{\sum_{i=0}^2 \lambda_i v_i : \sum_{i=0}^2 \lambda_i = 1, \lambda_i \ge 0\}$$

 λ s (Barycentric Coordinates):

interior of a simplex \rightarrow all $\lambda_i > 0$; boundary of a simplex \rightarrow $\exists \lambda_i = 0$.

A simplex is the smallest convex set containing its vertices.

Barycentric Coordinates

- Why Barycentric Coordinates are so defined <u>uniquely</u>?
 - From $v = \sum_{i=1}^{3} \lambda_i v_i$ and $\sum_{i=1}^{3} \lambda_i = 1$, $\lambda_1, \lambda_2, \lambda_3 > 0$

We have: $\lambda_3 = 1 - \lambda_1 - \lambda_2$

Without loosing generality, we can defined a local 2D coordinate system on (v_1, v_2, v_3) :

$$\begin{cases} x = \lambda_1 x_1 + \lambda_2 x_2 + (1 - \lambda_1 - \lambda_2) x_3 \\ y = \lambda_1 y_1 + \lambda_2 y_2 + (1 - \lambda_1 - \lambda_2) y_3 \end{cases}$$

+
$$\begin{cases} \lambda_1 (x_1 - x_3) + \lambda_2 (x_2 - x_3) + (x_3 - x) = 0 \\ \lambda_1 (y_1 - y_3) + \lambda_2 (y_2 - y_3) + (y_3 - y) = 0 \end{cases}$$
 i.e.
$$\begin{bmatrix} x_1 - x_3 & x_2 - x_3 \\ y_1 - y_3 & y_2 - y_3 \end{bmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} x - x_3 \\ y - y_3 \end{pmatrix}$$

Barycentric Coordinates (cont.)

$$\left(\begin{array}{c} x_{1} - x_{3} & x_{2} - x_{3} \\ y_{1} - y_{3} & y_{2} - y_{3} \end{array} \right) \left(\begin{array}{c} \lambda_{1} \\ \lambda_{2} \end{array} \right) = \left(\begin{array}{c} x - x_{3} \\ y - y_{3} \end{array} \right)$$
now
$$\left[\begin{array}{c} x_{1} - x_{3} & x_{2} - x_{3} \\ y_{1} - y_{3} & y_{2} - y_{3} \end{array} \right]$$
Since (r_{1}-r_{3}) and (r_{2}-r_{3}) are linear independent
has inversed matrix:
$$\frac{1}{(x_{1} - x_{3})(y_{2} - y_{3}) - (x_{2} - x_{3})(y_{1} - y_{3})} \left[\begin{array}{c} y_{2} - y_{3} & -(y_{1} - y_{3}) \\ -(x_{2} - x_{3}) & x_{1} - x_{3} \end{array} \right]$$

$$\left(\begin{array}{c} \lambda_{1} \\ \lambda_{2} \end{array} \right) = \frac{1}{(x_{1} - x_{3})(y_{2} - y_{3}) - (x_{2} - x_{3})(y_{1} - y_{3})} \left[\begin{array}{c} y_{2} - y_{3} & -(x_{2} - x_{3}) \\ -(y_{1} - y_{3}) & x_{1} - x_{3} \end{array} \right] \right]$$

$$\lambda_{1} = \frac{(x - x_{3})(y_{2} - y_{3}) - (x_{2} - x_{3})(y_{1} - y_{3})}{(x_{1} - x_{3})(y_{2} - y_{3}) - (x_{2} - x_{3})(y_{1} - y_{3})}$$

Barycentric Coordinates (cont.)

The denominator:

 $(x_1 - x_3)(y_2 - y_3) - (x_2 - x_3)(y_1 - y_3) = x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)$

Twice the signed area of triangle $((x_1,y_1), (x_2, y_2), (x_3,y_3))$

Similarly, the numerator $(x - x_3)(y_2 - y_3) - (x_2 - x_3)(y - y_3)$

is twice the signed area of triangle $((x,y), (x_2, y_2), (x_3, y_3))$

 $\lambda_1 = \text{Area}(v, v_2, v_3) / \text{Area}(v_1, v_2, v_3)$

Simplicial Complex

 A <u>simplicial complex</u> is a finite set K of simplexes, satisfying the intersection condition:

if
$$s, t \in K$$

then $s \cap t = -\begin{bmatrix} \emptyset \\ a \text{ simplex both of } s \text{ and of } t \end{bmatrix}$

• Neighborhoods in a simplicial complex:

Continuous VS Discrete

	<u>Continuous Def.</u>	<u>Discrete Def.</u>
Closed Surface:	Each point's neighborhood is homeomorphic to 2D plane	Each vertex's "star- bar" simplicial complex is a simple closed polygon
Open Surface:	Boundary point's neighborhood is homeomorphic to 2D half-plane	Boundary vertex's "star-bar" simplicial complex is a simple closed polygon, with this vertex on the boundary

Similarly, for 1D-, 3D-, ... nD- manifolds...

Curves, Surfaces, Solids...

Surfaces

= the space in which every point has a neighborhood ~ an open disk

People living at a point on a surface, (if their perception is limited to a small neighborhood of their point), are unable to distinguish their situation from that of people actually living on a plane. \leftarrow Our living on the earth fits the description

Topology \rightarrow Curves \neq Surfaces

The neighboring information \rightarrow Curves \neq Surfaces

Topologically, curves and surfaces are inequivalentAre all surface equivalent?

 $\Box A$ surface can continuously deform to another arbitrary surface?

Topological Classification of Surfaces

Sphere ≠ Disk ≠ Torus ≠ ... ≠ 2 spheres ... ≠ Disk with an inner hole ...

What characterizes topological equivalence-relationship?

 # of Connected Components 	\rightarrow c
	N 1

- # of Boundaries $\rightarrow b$
- # of <mark>Genus</mark>
- Orientability

 \rightarrow g \rightarrow o (y/n)

Theorem: $c, b, g, and o \rightarrow topological equivalence$

How to compute c, b, and g of a given surface? →c and b are intuitively straightforward →g: Euler Characteristic Number

Euler Characteristic

Euler Characteristic #: $\chi = 2 - 2 g - b$ (for e

(for each component)

Given a discretization,

i.e. a tessellation with F faces, E edges, and V vertices:

 $\chi = V - E + F$ (Euler Formula)

Euler Characteristic # (A topological invariance):

 \rightarrow a most important topological property of the shape

(defined over a specific discretization, but characterizes the surface topological properties regardless of how the division is made)

Euler Characteristic # (cont.)

For higher dimensional manifolds. e.g. a solid object (3D manifold):

 $\chi = V - E + F - S$

□Many applications/examples:

Map coloring

(4 on the plane, 6 on the sphere... Heawood's conjecture) •Regular Polyhedra

■...

Euler Characteristic # (cont.)

An example: Platonic Solids (Regular polyhedra)

Regular Polyhedron = one in which all faces have the same # of edges, and all vertex have same valence

Ancient Greeks discovered there are only five regular polyhedra...

Proof: (by Euler Formula) Suppose each face has x vertices (edges), and each vertex's valence is y, then 1) x * F = 2 * E, x > 2, and 2) Y * V = 2 * E, y > 2Euler Formula \Rightarrow V-E+F=2 $\Rightarrow 2E/x - E + 2E/y = 2$, i.e. $1/x + 1/y - \frac{1}{2} = 1/E$ From E>0, and x, y both >= 3, \Rightarrow Both x and y < 6 The result can be enumerated (only 5 types)

Orientability

(Intuitively) Given a surface, whether we can clearly define "outward"-side and "inward"-side

A non-orientable manifold has a path which brings a traveler back to his starting point mirror-reversed.

Topological Surface Classification

- 1. Connected-Components
- 2. Boundary
- 3. Genus
- 4. Orientability

Theorem:

Any <u>closed</u> surface uniquely falls into one of the following categories:

- 1) Sphere (genus-0, orientable)
- 2) k-Klein bottle (genus-k, non-orientable)
- 3) g-Torus (genus-g, orientable)

What happen if we use half-edge data structure to represent a nonorientable surface?

Puzzle

- 1. How do we find out the topology of our planet? (e.g. is it a sphere or a donut?)
 - a) Intuitively, if we can jump out of it, and look from outside, maybe we can somehow figure it out.
 - b) But if we are ants with local perceptions, do we have anyway to get to know the space we stay in?

Tessellate the planet! Then get the Euler Characteristic #.

But from such a number, do you get enough intuitions? → what geometrically differentiates a torus and a sphere?

Poincaré studied this problem, and founded modern Algebraic Topology...

An intuitive explanation \rightarrow loops on surfaces

Homework 1

- 1. A more-complicated "program1.cpp"
- 2. A mesh library with better efficiency
- 3. See the homework description pdf file for more details

http://www.ece.lsu.edu/xinli/teaching/EE4700Fall2009/Homework1.pdf

Next Class

Level of Details (LOD) Paradigm: Progressive Meshes...