
Half-Edge Structure
for Triangle Meshes

Half-Edge Data Structure
(What?) A common way to represent triangular mesh for
geometric processing

we focus on triangle-mesh here (it works for general polygonal
mesh).
3D analogy: half-face data structure for tetrahedral mesh

(Why?) Effective for maintaining incidence information of
vertices

Efficient local traversal
Low spatial cost
Supporting dynamic local updates/manipulations (edge collapse,
vertex split, etc.)

Questions of mesh rep.?
Remember when we store a triangle mesh by

A vertex table (geometry) + A facet table (connectivity)
Enough to preserve all the information, but how will you use this
representation to solve the following questions and how efficient your
algorithm can be?

Whether a given vertex is on the boundary?
What are the 1-ring neighboring vertices of a vertex?
How to traverse from one vertex to another vertex?
…
…

seems difficult by just looking at those
two tables
Need a more efficient representation

We need to answer these questions when we manipulate meshes
(e.g. computing surface normal, detecting how curved a region is…)

Half-Edge Data Structure
Looking at a triangle mesh:

2 vertices share an edge, 2 faces share an edge
each face has 3 vertices and 3 edges…
We can store all incidence information and build a big network

But a vertex can have many neighboring vertices, edges, and faces
Storing “half-edges” is simply enough
Each edge has 2 half-edges (a boundary edge only has 1)

Half-Edge Data Structure (cont.)
For each edge:

it has 2 half-edges (the boundary edge has 1)
they are called twins to each other

For each half-edge:
bounds 1 face and 1 edge a face pointer, an edge

pointer, respectively
has one origin, and one target vertex a vertex

pointer (for the target)
To be able to walk around a face:
it has a pointer to the next half-edge
also a pointer to the previous half-edge

For each face:
3 half-edges belong to it
To simply access all its incident elements Only need

a pointer to a (random) half-edge
For each vertex

A pointer to an arbitrary half-edge that has it as the
target

Record its 3D coordinates (its geometric location)
Linear Storage! Constant time Local Traversal!

Note the directions of
those half-edges
bounding a face.

Half-Edge Data Structure (example)
Containers to store primitives:

The Vertex Container v1 … v6

The Half-Edge Container [v1,v2], [v2, v3], [v3, v1], [v1, v3], [v3, v4], …

The Edge Container [v1,v3], [v1,v2], [v2,v3], [v1,v4], [v3,v4], …

The Face Container f1[v1,v2,v3] … f5[v4,v3,v6]

Note: the container could be array, list, binary
search tree…
(it depends, but usually List is good enough!)

Remember the Half-Edge direction: [v1, v2] or [v2,
v1] around each face?
Should be consistent:

e.g. CCW in our configuration (right hand rule)

Need only one

Half-Edge Data Structure (example)
Containers to store primitives:

The Vertex Container v1 … v6

The Half-Edge Container [v1,v2], [v2, v3], [v3, v1], [v1, v3], [v3, v4], …

The Edge Container [v1,v3], [v1,v2], [v2,v3], [v1,v4], [v3,v4], …

The Face Container f1[v1,v2,v3] … f5[v4,v3,v6]

Face

Vertex

Edge

Half-Edge

Relationship between primitives:

Using Half-Edge Data Structure
Examples:

1. How to check whether a vertex/edge/face is on the boundary?
Simply check whether an edge has one half-edge

2. How to find the one-ring neighboring vertices of a vertex v?
Get any half-edge targeting v, iteratively get “next()”, then “twin()”

3. How to travel along the boundary?
…get a boundary vertex and its most CLW outwards halfedge,
iteratively do next(), twin(), next()…

4. Some other operations such as subdivision/simplification…?

Face

Vertex

Edge

Half-Edge

Using Half-Edge Data Structure
Examples:

1. How to check whether a vertex/edge/face is on the boundary?

Example codes to print all boundary edges of a given mesh “cmesh”
Mesh * cmesh;
…
For (MeshEdgeIterator eit(cmesh); !eit.end(); ++eit){

Edge * e = *eit;
if (e he(1)==NULL)
{ //this is a boundary edge, output it

Halfedge * he = *e he(0);
std::cout << “[“ << he source() id() << “ , “ <<

he target() id() << “]” << std::endl;
}

}

Using Half-Edge Data Structure
Examples:

2. How to find the one-ring neighboring vertices of a vertex v?

Example codes to print one-ring vertex of a given vertex “cv”
(Method 1: Try to traverse using the half-edge data structure)

Vertex * cv;
…
Halfedge * he0 = cv he();
Halfedge * he = he0;
Do {

Vertex * v = he source();
std::cout << v id() << std::endl;
he = he he_next();
he = he he_twin();

}while (he!=he0);

Using Half-Edge Data Structure
Examples:

2. How to find the one-ring neighboring vertices of a vertex v?

Example codes to print one-ring vertex of a given vertex “cv”
(Method 2: Using the “iterator” class, when you have the mesh library)

Vertex * cv;
…
For (VertexVertexIterator vvit(cv); !vvit.end(); ++vvit){

Vertex * v = * vvit;
std::cout << v id() << std::endl;

}

Using Half-Edge Data Structure
Examples: 3. How to travel along the boundary?

Example codes to traverse the boundary (given a boundary halfedge, go
on and collect all following halfedges in the same loop)
Halfedge * he0; //suppose it is a boundary half-edge
…
Halfedge * he = he0;
Do {

std::cout << he << std::endl;
Halfedge * he1= he;
Do {

he1 = he1 he_next();
he = he1;
he1 = he1 he_twin();

} while (he1 != NULL)
}while (he!=he0);

Using Half-Edge Data Structure
Examples:

4. Subdivision: to split a face (type 2)

Face * f0; //the face we want to split
…
-Create a new vertex nv the mass center of f0
-Create three new edges, six new halfedges
-Update half-edges, forming three cycles
-Create three new faces, link edges, halfedges accordingly
-Delete the original face

One example:

Another
example:

…

Using Half-Edge Data Structure
Examples:

4. Simplification:

In one week

Resources for
“Half-Edge” Data Structure

Face

Vertex

Edge

Half-Edge

To better understand the codes:
Go through the “copyTo()” method in the
class “Mesh”, see what points need to be
filled in for each element;
Go through the “read()” method in the class
“Mesh”, see how we build up half-edge
structure from the vertex table + face
table;
Go through “iterators.h”, see what iterator
you can use to help you traverse around

To get better understanding about it, you can
1) Download and read codes from:

http://www.ece.lsu.edu/xinli/teaching/MeshLib.zip
2) In Computational Geometry, it is well known as “doubly-connected edge

list” structure (extendible to general polygonal mesh)
Comp. Geom. book: “Computational Geometry Algorithms and Applications”, by M. de
Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Springer-Verlag.

http://www.ece.lsu.edu/xinli/teaching/MeshLib_Simple.zip

Some other issues
for people don’t know how to program using half-edge data structure and

OpenGL, but want to work on 3D shapes and meshes first:
Store meshes with 2 tables, use viewers/programs written by others as a black box
to visualize or even edit the model...
Before we can design a fully robust/powerful GUI for editing and visualization
(which we may keep doing through the semester), here are something for us to play
with triangle meshes and 3D shapes:

Some mesh data (.m format) can be downloaded at:
http://www.ece.lsu.edu/xinli/teaching/meshdata1.zip
A small viewer “G3dOGL.exe” (for .m format mesh) can be downloaded at:
http://www.ece.lsu.edu/xinli/Tools/G3dOGL.exe
Many 3D triangle mesh models online (but in different formats):

Stanford 3D Scanning Repository: http://graphics.stanford.edu/data/3Dscanrep/
Aim@Shape Repository
http://shapes.aim-at-shape.net/index.php

http://www.ece.lsu.edu/xinli/teaching/meshdata1.zip
http://shapes.aim-at-shape.net/index.php

	Half-Edge Structure �for Triangle Meshes
	Half-Edge Data Structure
	Questions of mesh rep.?
	Half-Edge Data Structure
	Half-Edge Data Structure (cont.)
	Half-Edge Data Structure (example)
	Half-Edge Data Structure (example)
	Using Half-Edge Data Structure
	Using Half-Edge Data Structure
	Using Half-Edge Data Structure
	Using Half-Edge Data Structure
	Using Half-Edge Data Structure
	Using Half-Edge Data Structure
	Using Half-Edge Data Structure
	Resources for �“Half-Edge” Data Structure
	Some other issues

