Triangular Mesh

• Geometric shapes can be triangulated

Polygonal approximation of surfaces:

Any 2D shape or 3D surface (2-manifold) can be approximated with locally linear polygons. To improve (visual or numerical approximation quality), we only need to increase the number of edges

Tetrahedral Mesh

• Solid shapes can be tetrahedralized

Polyhedra approximation of solid geometric data

Any 3D volumetric data (3-manifold) can be approximated with locally linear polyhedra. To improve (visual or numerical approximation quality), we only need to increase the number of edges

How to Represent Triangular Meshes?

Vertex table		
V1	(x1,y1,z1)	
V2	(x2,y2,z2)	
V3	(x3,y3,z3)	
V4	(x4,y4,z4)	
V5	(x5,y5,z5)	

Face table			
F1	V1,V3,V2		
F2	V1,V4,V3		
F3	V5,V1,V2		

How to Represent Triangular Meshes?

Example: a female face mesh with 10k triangles

Vertex Vertex Vertex Vertex Vertex Vertex	1 0.6036570072 0.4613159895 0.070380598 2 0.6024590135 0.4750890136 0.071345098 3 0.6083189845 0.4888899922 0.077357903 4 0.611634016 0.5039420128 0.0809852033 5 0.6236299872 0.5097290277 0.094125300 6 0.633580029 0.5194600224 0.1063940004 7 0.6350849867 0.5272089839 0.110838000	32 Face 2 64 63 4 12 Face 3 5 64 4 9 Face 4 65 5 6 65 Face 5 7 65 6 Face 6 8 65 7 8 Face 7 9 66 8
	8 0.6459569931 0.5308039784 0.124761000 9 0.6456990109 0.5446619997 0.122420002	
Vertex Vertex Vertex Vertex Vertex Vertex Vertex Vertex Vertex Vertex Vertex Vertex Vertex	9 0.6456980109 0.5446619987 0.132429003 10 0.6566579938 0.5420470238 0.14652700 11 0.6629710197 0.5443329811 0.15866500 12 0.671701014 0.541383028 0.1747259945 13 0.6746420264 0.5451539755 0.18516600 14 0.6825680137 0.5424500108 0.20672400 15 0.6884790063 0.5414119959 0.23143599 16 0.6935830116 0.5425440073 0.28170299 17 0.6931750131 0.5425440073 0.28170299 18 0.7026360035 0.5316519737 0.2960889 19 0.7058500051 0.5267260075 0.30854800 20 0.7095490098 0.5337790251 0.32536199 21 0.7158439755 0.5286110044 0.34635600 23 0.7237830162 0.5144050121 0.36890101 24 0.7282400131 0.5028949976 0.38273799	72 Face 10 11 67 10 14 Face 11 12 67 11 Face 12 14 75 13 13 Face 13 68 76 15 3 Face 14 16 68 15 93 Face 15 17 68 16 96 53 62 34 69 98 43 43

Face Normal

A normal of a face [p1,p2,p3] can be computed as p1p2 * p2p3, where * is the cross-product

You can either(1) directly assign it to each vertex on this face,(2) or compute the weighted-average of its one-ring faces.

See more explanations here:

http://www.lighthouse3d.com/opengl/terrain/index.php3?normals

Homework 1

Due: 9/12