Triangular Mesh

- Geometric shapes can be triangulated

Polygonal approximation of surfaces:

Any 2D shape or 3D surface (2-manifold) can be approximated with locally linear polygons. To improve (visual or numerical approximation quality), we only need to increase the number of edges

Tetrahedral Mesh

- Solid shapes can be tetrahedralized

Polyhedra approximation of solid geometric data

Any 3D volumetric data (3-manifold) can be approximated with locally linear polyhedra. To improve (visual or numerical approximation quality), we only need to increase the number of edges

How to Represent Triangular Meshes?

Vertex table	
V1	$(x 1, y 1, z 1)$
V2	$(x 2, y 2, z 2)$
V3	$(x 3, y 3, z 3)$
V4	$(x 4, y 4, z 4)$
V5	$(x 5, y 5, z 5)$

Face table	
F1	$\mathrm{V} 1, \mathrm{~V} 3, \mathrm{~V} 2$
F2	$\mathrm{V} 1, \mathrm{~V} 4, \mathrm{~V} 3$
F3	$\mathrm{V} 5, \mathrm{~V} 1, \mathrm{~V} 2$

How to Represent Triangular Meshes?

Example: a female face mesh with 10k triangles


```
Wertex 1 0.6036570072 0.4613159895 0.07038059831
Werter 2 0.6024590135 0.4750890136 0.07134509832
Werter 3 0.6083189845 0.4888899922 0.07735790312
Verter 4 0.611634016 0.5039420128 0.08098520339
Verter 5 0.6236299872 0.50997290277 0.09412530065
Vertex 6 0.633580029 0.5194600224 0.1063940004
Vertex 7 0.6350849867 0.5272089839 0.1108580008
Vertex 8 0.6459569931 0.5308039784 0.1247610003
Vertex 9 0.6456980109 0.5446619987 0.1324290037
Vertex 10 0.6566579938 0.5420470238 0.1465270072
Vertex 11 0.6629710197 0.5443329811 0.1586650014
Vertex 12 0.671701014 0.541383028 0.1747259945
Vertex 13 0.6746420264 0.5451539755 0.1851660013
Tertex 14 0.6825680137 0.5424500100 0.206724003
Wertex 15 0.6884790063 0.5414119959 0.2314359993
Werter 16 0.6935830116 0.5439419746 0.2590880096
Werter 17 0.6981750131 0.5425440073 0.2817029953
Werter 18 0.7026360035 0.5316519737 0.2960689962
Verter 19 0.7058500051 0.5267260075 0.3085480034
Wertes 20 0.7095490099 0.5337790251 0.3253619969
Verter 21 0.7104460001 0.5344949961 0.3296009898
Werter 22 0.7158439755 0.5286110044 0.3463560045
Werter 23 0.7237830162 0.5144050121 0.3689010143
Verter 24 0.7282400131 0.5028949976 0.3827379942
```

Face 16334 Face 264634
Face 35644
Face 46556
$\begin{array}{llll}\text { Face } & 4 & 65 & 5 \\ \text { Face } & 5 & 7 & 65\end{array}$
$\begin{array}{lllll}\text { Face } 5 & 7 & 65 & 6 \\ \text { Face } \\ 6 & 8 & 65 & 7\end{array}$
Face 79668
Face 810669
Face 9676610
Face 10116710
Face 11126711
Face 12147513
Face 13687615
Face 14166815

Face	15	17	68

Face Normal

A normal of a face [p1,p2,p3] can be computed as p1p2 * p2p3, where * is the cross-product

You can either
(1) directly assign it to each vertex on this face,
(2) or compute the weighted-average of its one-ring faces.

See more explanations here:
http://www.lighthouse3d.com/opengl/terrain/index.php3?normals

Homework 1

Due: 9/12

