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Outline for TodayOutline for Today
A brief review and wrap-up for last class on 2D 
transformations
3D transformations
Transformations from 3D 2D: Projections Transformations from 3D 2D: Projections 



Review of Last classReview of Last class
Set up GLUT in your system

Compile and run the “hello world” program
Review related linear algebra

Points  vectors  framesPoints, vectors, frames
Transformations
Homogeneous Coordinates



Review of Last class (cont )Review of Last class (cont.)
Derivation of 2D rotation 
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Scaling transformation matrix
They are about the origin 
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They are about the origin 
Rotation: the whole space rotates
Scaling: the object will be further or 
closer to the origin depending on the closer to the origin depending on the 
scales

Rotation/Scaling Center 
To transform around the shape center  or To transform around the shape center, or 
any given point p:  (3-step Composition)

Translate p to the origin
Conduct the transformation
Translate back



Composition of Transformations

With homogeneous coordinates, affine transformations and their 
iti  b  t d b  t i  d th i  d tcomposition can be represented by matrices, and their product

E lExamples:
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Rigid Transformation
product of an arbitrary sequence of rotation and translation matrices product of an arbitrary sequence of rotation and translation matrices 

preserving length, angles
Affine transformation 

product of an arbitrary sequence of rotation, translation, scale, and 
h  

p y q
shear matrices
preserving parallelism



Composition of Transformations (cont.)

Combine fundamental R, S, and T matrices produce desired 
general affine transformation
Gain efficiency by applying a single composed transformation, 
rather than a series of transformations

Examples: Rotating a house about a point P1 by an angle p g p 1 y g



2D Window-To-Viewport Transformation

We get objects (2D) represented in world-coordinate system
We need to map them onto screen coordinates
A common question:

Given a rectangular region in world coordinates (world-coordinate window)
A corresponding rectangular region in screen coordinates (viewport)
To find the transformation To find the transformation 

Sometimes, we want the isometry.



Matrices for 3D Transformations
3D transformations 4 by 4 matrices, using homogeneous 
coordinates

A point (x y z) points (Wx  Wy  Wz  W)  or (x/W  y/W  z/W  1)A point (x,y,z) points (Wx, Wy, Wz, W), or (x/W, y/W, z/W, 1)
W=0 corresponds to the point at infinity

o 3D Translation and Scaling are extended from 2D case 

The positive direction of 3D Rotations in right-handed system:

straightforwardly.
o As for Rotation:
The positive direction of 3D Rotations in right handed system:

positive rotations = when looking from a positive axis toward the 
origin, a 90 degree counterclockwise rotation will transform one 
positive axis into the other, according to the following table:
Rotation axis = x positive rotation is from y to z

axis = y from z to x
axis = z from x to yy



Matrices for 3D Transformations
o 3D Rotation:

o Previous 2D rotation                            can be treated as ⎥
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a 3D rotation about z axis
o i.e.
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1  All these basic transformation matrices have inverse  therefore any affine 1. All these basic transformation matrices have inverse, therefore any affine 
transformation composed by them does too.

2. Any number of rotation, scaling, and 
translation matrices can be multiplied ⎥
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Transforming lines and planes
Each transformation matrix applies on vectors, or individual points.

Transforming lines by transforming the endpointsTransforming lines by transforming the endpoints
Transforming triangles by transforming the three vertices.
Transforming planes (represented using N=[A B C D]T, and defined through 
{P|N•P=0} ) by transforming its normal{P|N•P=0} ) by transforming its normal.



Composition of 3D Transformations
Example:
Given the directed line 

A common situation when we setup a local 3D coordinate system.

segments P1P2 and P1P3 in 
(a), find the transformation 
to transform it to their 
ending positions in (b): P1 at ending positions in (b)  P1 at 
the origin, P1P2 on positive 
z-axis, and P1P3 in the 
positive y axis half of the 
(y z) plane (y,z) plane 

Show two ways to solve it:
(1) Apply a sequential primitive transformations: translation + rotations…
(2) Using the properties of orthogonal matrices ( ) g p p g



Method 1

Break it into simpler sub-problems, we can get it in four steps:
1 Translate P to the ori in1. Translate P1 to the origin
2. Rotate about the y-axis P1P2 lies in the (y,z) plane
3. Rotate about the x-axis P1P2 lies on the z-axis
4. Rotate about the z-axis P1P3 lies in the (y,z) plane
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Method 1

Break it into simpler sub-problems, we can get it in four steps:
1 Translate P to the ori in1. Translate P1 to the origin
2. Rotate about the y-axis P1P2 lies in the (y,z) plane
3. Rotate about the x-axis P1P2 lies on the z-axis
4. Rotate about the z-axis P1P3 lies in the (y,z) plane

Step 2. Need to rotate about y-axis by –(90-θ)=(θ-90)

)90(2
o−= θyRR

hwhere



Method 1

Break it into simpler sub-problems, we can get it in four steps:
1 Translate P to the ori in1. Translate P1 to the origin
2. Rotate about the y-axis P1P2 lies in the (y,z) plane
3. Rotate about the x-axis P1P2 lies on the z-axis
4. Rotate about the z-axis P1P3 lies in the (y,z) plane

Step 3. Need to rotate about x-axis by Φ

)(3 φxRR =

where



Method 1

Break it into simpler sub-problems, we can get it in four steps:
1 Translate P to the ori in1. Translate P1 to the origin
2. Rotate about the y-axis P1P2 lies in the (y,z) plane
3. Rotate about the x-axis P1P2 lies on the z-axis
4. Rotate about the z-axis P1P3 lies in the (y,z) plane

Step 4. Need to rotate about z-axis by α

)(4 αzRR =

So the final composited transformation is:



Method 2
A generally useful quicker way 
to get the rotation matrix.

To obtain the rotation matrix R using the properties of orthogonal matrices
1) Each row is a unit vector
2) Each row is perpendicular to the other
3) R’s transpose is its inverse matrix3) R s transpose is its inverse matrix
4) The ith row (except the last row) as a vector, will be rotated by

R(θ) to lie on the positive axis ei

R h T

1. we want to rotate P1P2 to “+z”-axis, so the 3rd row should 
be the normalized P1P2 :

If  R rotates a normalized vector v to ei, then its ith row is vT

be the normalized P1P2 :

2. Rx unit vector is perpendicular to the plane of P1, P2 and 
P3, and will rotate into the “+x”-axis, so the 1st row:

3. Finally: 



Viewing in 3D
2D shapes window clip, translate, scale, translate 2D viewport
3D shapes projection 2D viewport

(view volume clip projection 2D transform)(view volume clip projection 2D transform)



Projections
Generally:

Projections transform points in a n-D coordinate system into points in a 
D di t  t  ( )m-D coordinate system (m<n)

Computer Graphics has long been used for studying n-D objects by 
projecting them into lower dimensional (especially, 2D) space.p j g ( p y, ) p

Noll, M. , “A Computer Technique for Displaying N-dimensional hyperobjects”, 
CACM, 10(8), Aug. 1967, 469-473.

Here:Here:
We focus on projections 
from 3D to 2D.

Projection : 
straight projection rays (projectors) emanating from a center of projectionstraight projection rays (projectors) emanating from a center of projection
Passing through each point of the object
Intersecting a projection plane to form the projection image



Classification of Projections
General Classification:

We deal with planar geometric projections
Non-planar projection: the projection plane is a curved surface (e g  many Non-planar projection: the projection plane is a curved surface (e.g. many 

cartographic projections)
Non-geometric projection: the projection rays are curved (e.g. the Omnimax

film)

Planar Geometric Projections:
Parallel projection: projection center is infinitely far away

so that all projectors are parallel
We only need to specify direction of projectionWe only need to specify direction of projection

Perspective projection: projection center is finite distance away
Need to specify projection center



Classification of Projections
General Classification:
Planar Geometric Projections:

Perspective projection:
Visually : perspective foreshortening (the object size varies 

inversely with the distance from the projection center), similar to 
human visual systemhuman visual system

Measurement: 
not good for recording exact shape,
angles are preserved only on those faces of the object parallel to the 

projection planeprojection plane,
parallel lines generally are not projected to be parallel

Parallel projection:
Visually : less realistic 
M t  Measurement: 

good for exact measurement, 
parallel lines remain parallel, 
angles only preserved on faces that are parallel to the projection plane 

For more detailed discussions, check: Carlbom, I. and J. Paciorek, “Planar Geometric 
Projections and Viewing Transformations”, Computing Surveys, 10(4), Dec. 1978, pp. 465-502.



Perspective Projections
Any set of parallel lines, that are not parallel to the projection plane, converge 

to a vanishing point.
Axis vanishing point: if the set of lines that converges is parallel to one of the g p f f g p f

three principal axes
There are at most three such points

e.g. if the projection plane cuts only the z-axis, then only the z axis has a 
principal vanishing point (lines parallel to either x or y axes have no vanishing p p g p ( p y g
point)

Perspective projections are categorized by # of principal vanishing pts (i.e. by 
the # of axes the projection plane cuts)

One point perspecti e projectionOne point perspective projection

Two point perspective projection



Parallel Projections
Categorized into two types, depending on the relation between (1) the direction 

of projection and (2) the normal to the projection plane:
Orthographic parallel projections: (1) and (2) have the same directiong p p p j ( ) ( )
Oblique parallel projections: (1) and (2) have different directions

Orthographic Parallel projections:
Front,top,side-elevation projections: , p, p j

oOften used in engineering drawings
oDistances and angles can be measured
oBut…

Axonometric orthographic projections:g p p j
oProjections not normal to a principal axis
oParallelism of lines preserved, angles not preserved
oDistances can be measured along each principal axis 
(with different scales)( )
oA commonly used type: isometric projection 

projction direction makes equal angles with each axis 
(e.g.  direction (1,1,1), every axis pair looks like 120 degree)



Parallel Projections (cont.)
Categorized into two types, depending on the relation between (1) the direction 

of projection and (2) the normal to the projection plane:
Orthographic parallel projections: (1) and (2) have the same directiong p p p j ( ) ( )
Oblique parallel projections: (1) and (2) have different directions

Oblique Parallel projections:
Cavalier projections:p j

Projection direction makes a 45 ◦ angle with the 
projection plane

Result: line perpendicular to the projection plane 
preserves length, no foreshorteningp g , g

2 examples, right middle 2 figs.
direction:                     and                 
projection plane:  z=0 plane

Cabinet projections:

)1,2/2,2/2( − )1,2/1,2/3( −

p j
Projection direction makes a 63.4◦ angle with the 

projection plane
Result: line perpendicular to the projection plane 

has half lengthg
Visually more realistic, right bottom 2 figs

direction:                       and
projection plane: the z=0 plane

)1,4/2,4/2( − )1,4/1,4/3( −



Planar Geometric Projections



Specifying an 3D View

3D viewing = view volume clip projection 2D transformation

1. Projection plane (also called view plane)
Defined by a point on the plane (view reference point, VRP) + 

a normal to the plane (view-plane normal, VPN)a normal to the plane (view plane normal, VPN)
2. A window on the view plane

Contents projected outside of the window is not shown
Defined by a min and ma window coordinates along two axesy g
3D viewing-reference coordinate (VRC) system:

Origin VRP
One axis of VRC VPN (now called the n axis)
Another axis view up vector (VUP)  v-axis on the view planeAnother axis view up vector (VUP), v axis on the view plane
The last axis u-axis to form the right-handed system



Specifying an 3D View

3. The center and direction of projection (DOP)
Defined by a projection reference point (PRP) + an indicator Defined by a projection reference point (PRP) + an indicator 

of the projection type
If the projection type is “perspective”, then PRP is the center 

of projection (COP)p j ( )
If the projection type is “parallel”, then the DOP is from the 

PRP to center of the window on view plane (CW)
(CW might not be VRP, depending on max/min of (u,v))



View Volume

The View volume bounds that portion of the world that is to be 
clipped out and projected onto the view planeclipped out and projected onto the view plane.
For perspective projections: 

view volume semi-infinite pyramid with apex at the PRP and 
edges passing through the corners of the windowg p g g
Positions behind the center of projection are not projected

For parallel projections:
View volume infinite parallelepiped with sides parallel to the 
direction of projection (direction from the PRP to the center of direction of projection (direction from the PRP to the center of 
the window)

Limiting the view volume (for both projection types)
To eliminate extraneous objects j
To eliminate unnecessary computation 

e.g. displaying distant objects in perspective projections
setup a front clipping plane and back clipping plane, specified by 
the signed quantities front distance (F) and back distance (B)the signed quantities front distance (F) and back distance (B)



3D View Port

Now we have the view volume (decided by PRP, VRC system, 
window range u and v  F and B)window range u and v, F and B)

To map all contents onto the display surface:
Map the view volume to the viewport rectangular window with 
a z-deptha z depth

front (back) clipping plane zmax (zmin)
umin (umax)side of the view volume xmin (xmax) plane
vmin (vmax)side of the view volume ymin (ymax) planemin ( max) ymin (ymax) p

To display images for all points after their projections, simply 
discard the z-component
For visible surface detection: the hidden surface removal 

l   h    d  h h  simply uses the z-component to determine which primitives 
are closer to viewer and should be visible



Matrix for Planar Geometric Projections

Start from the simplest cases: 
A perspective projection whose projection plane is normal to z-axis A perspective projection whose projection plane is normal to z-axis 
at z=d
A parallel projection whose projection plane is the z=0 plane
Each projection can be defined as a 4 by 4 matrix (coherent with 

h  f  )other transformation matrices)

…Later more general cases will be transformed to these cases.



Case 1. Perspective Projection
Case 1.1: projection plane at z=d, projection center at the origin, a 

point P(x,y,z) to be projected onto it as Pp(xp, yp, zp=d) 



Case 1. Perspective Projection
Case 1.2: projection plane at z=0, the center of projection at z=-d, 

a point P(x,y,z) to be projected onto it as Pp(xp, yp, zp=0) 



Case 2. Parallel Projection
Case 2.1: orthographic projection onto projection plane at z=0



Case 3. A More General Projection
Case 3.1: a perspective projection

project any point P(x,y,z) onto the projection plane (still 
perpendicular to z axis) at P (x y z )perpendicular to z axis) at Pp(xp, yp, zp)
the center of projection (COP) has the distance Q from the 
point (0,0,zp)
The direction from (0,0,zp) to COP is the normalized (dx, dy, dz)p x y z
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Case 3. A More General Projection
Case 3.2: a parallel projection but not orthographic

Cavalier and Cabinet projection onto the (x,y) plane, with α angle 
shown belowshown below.
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Case 3. A More General Projection
Therefore, this is a general representation 

(for projection plane z=0, … etc):
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The following table includes previously 
derived projection matrixes.
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3D Viewing Process



Implementing Planar Geometric Projections
For Computational efficiency!

Certain view volumes are easier to clip against (canonical view volumes):n w um p g n ( n n w um )
For parallel-projection view volume:

(x,y,z) in {([-1,1],[-1,1],[-1,0])}
For perspective-projection view volume:

(x y z) in {[ z z] [ z z] [ z 1]}(x,y,z) in {[-z, z],[-z,z], [-zmin, -1]}
Normalizing transformations Npar and Nper

transform an arbitrary view volume into the canonical view volumes



Normalizing Transformation Matrix Npar

Derive Npar for the most general case the oblique parallel projection
General Pipeline:
1 Translate the VRP to the origin1. Translate the VRP to the origin
2. Rotate VRC : the (u,v,n)-axis (VPN) (x,y,z)-axis
3. Shear : the direction of projection (DOP) z-axis
4. Translate and scale into the parallel-projection canonical view volume

View-orientation matrix step 1, 2
View-mapping matrix step 3,4

Example (see the figure in the next page)
1. Translation T(-VRP)
2. Rotation R(vectors u,v,n x,y,z)
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Normalizing Transformation Matrix Npar



Normalizing Transformation Matrix Nper

General Pipeline:
1. Translate the VRP to the origin
2 Rotate VRC : the (u v n) axis (VPN) (x y z) axis2. Rotate VRC : the (u,v,n)-axis (VPN) (x,y,z)-axis
3. Translate : COP (given by PRP) origin
4. Shear : the center line of the view volume z axis
5. Scale into the canonical view volume

Example
1. Same as Npar
2. Same as Nparpar

3. T(-PRP)

4. Center line = CW – PRP=
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Clipping Against a Canonical View Volume

Geometric Clipping Algorithm

Cli i  i  H  C di tClipping in Homogeneous Coordinates

detail for efficient intersection detecting etc. (later, discussed in deta l for eff c ent ntersect on detect ng etc. (later, d scussed n 
collision detections)


