Lecture 4-5

Transformations, Projections, and Viewing

Matrices for 3D Transformations

\square 3D transformations $\rightarrow 4$ by 4 matrices, using homogeneous coordinates
\square A point $(x, y, z) \rightarrow$ points $(W x, W y, W z, W)$, or ($x / W, y / W, z / W, 1$)
$\square \mathrm{W}=0 \rightarrow$ corresponds to the point at infinity

- 3D Translation and Scaling are extended from 2D case straightforwardly.
- As for Rotation:

The positive direction of 3D Rotations in right-handed system: positive rotations = when looking from a positive axis toward the origin, a 90 degree counterclockwise rotation will transform one positive axis into the other, according to the following table:
Rotation axis $=x \rightarrow$ positive rotation is from y to z

$$
\begin{array}{ll}
\text { axis }=y \rightarrow & \text { from } z \text { to } x \\
\text { axis }=z \rightarrow & \text { from } x \text { to } y
\end{array}
$$

Matrices for 3D Transformations

- 3D Rotation:
- Previous 2D rotation $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ can be treated as a 3D rotation about z axis
o i.e.

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Rotation matrices about x and y axes: $\quad R_{x}(\theta)=\left[\begin{array}{cccc}1 & 0 & \cos \theta & -\sin \theta \\ 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

1. All these basic transformation matrices have inverse, therefore any affine transformation composed by them does too.
2. Any number of rotation, scaling, and translation matrices can be multiplied together. The result always has the form:

$$
M=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Transforming lines and planes

Each transformation matrix applies on vectors, or individual points.

- Transforming lines by transforming the endpoints
- Transforming triangles by transforming the three vertices.
- Transforming planes (represented using N=[ABC D] ${ }^{\top}$, and defined through $\{P \mid N \cdot P=0\}$) by transforming its normal.

Composition of 3D Transformations

Example: A common situation when we setup a local 3D coordinate system.
Given the directed line segments $P_{1} P_{2}$ and $P_{1} P_{3}$ in (a), find the transformation to transform it to their ending positions in (b): P_{1} at the origin, $\mathrm{P}_{1} \mathrm{P}_{2}$ on positive z-axis, and $P_{1} P_{3}$ in the positive y axis half of the (y, z) plane

Show two ways to solve it:
(1) Apply a sequential primitive transformations: translation + rotations...
(2) Using the properties of orthogonal matrices

Method 1

(a) Initial position

(b) Final position

Transforming P_{1}, P_{2}, and P_{3} from their initial (a) to their final (b) position.
Break it into simpler sub-problems, we can get it in four steps:

1. Translate P_{1} to the origin
2. Rotate about the y-axis $\rightarrow P_{1} P_{2}$ lies in the (y, z) plane
3. Rotate about the x-axis $\rightarrow P_{1} P_{2}$ lies on the z-axis
4. Rotate about the z-axis $\rightarrow P_{1} P_{3}$ lies in the (y, z) plane

Step 1. Translate.

$$
P_{1}^{\prime}=T\left(-x_{1},-y_{1},-z_{1}\right) \cdot P_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right],
$$

$$
\begin{array}{r}
T_{1}\left(-x_{1},-y_{1},-z_{1}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{1} \\
0 & 1 & 0 & -y_{1} \\
0 & 0 & 1 & -z_{1} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{c}
{[1]} \\
P_{2}^{\prime}=T\left(-x_{1},-y_{1},-z_{1}\right) \cdot P_{2}=\left[\begin{array}{c}
x_{2}-x_{1} \\
y_{2}-y_{1} \\
z_{2}-z_{1} \\
1
\end{array}\right], \\
P_{3}^{\prime}=T\left(-x_{1},-y_{1},-z_{1}\right) \cdot P_{3}=\left[\begin{array}{c}
x_{3}-x_{1} \\
y_{3}-y_{1} \\
z_{3}-z_{1} \\
1
\end{array}\right],
\end{array}, \$ \text {, }
\end{array}
$$

Method 1

(a) Initial position

(b) Final position Transforming P_{1}, P_{2}, and P_{3} from their initial (a) to their final (b) position.

Break it into simpler sub-problems, we can get it in four steps:

1. Translate P_{1} to the origin
2. Rotate about the y-axis $\rightarrow P_{1} P_{2}$ lies in the (y, z) plane
3. Rotate about the x-axis $\rightarrow P_{1} P_{2}$ lies on the z-axis
4. Rotate about the z-axis $\rightarrow P_{1} P_{3}$ lies in the (y, z) plane

Step 2. Need to rotate about y-axis by $-(90-\theta)=(\theta-90)$

$$
\begin{gathered}
R_{2}=R_{y}\left(\theta-90^{\circ}\right) \quad \cos (\theta-90)=\sin \theta=\frac{z_{2}^{\prime}}{D_{1}}=\frac{z_{2}-z_{1}}{D_{1}} \\
\sin (\theta-90)=-\cos \theta=-\frac{x_{2}^{\prime}}{D_{1}}=-\frac{x_{2}-x_{1}}{D_{1}} \\
\text { where } \\
D_{1}=\sqrt{\left(z_{2}^{\prime}\right)^{2}+\left(x_{2}^{\prime}\right)^{2}}=\sqrt{\left(z_{2}-z_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}
\end{gathered}
$$

Method 1

(a) Initial position

(b) Final position

Transforming P_{1}, P_{2}, and P_{3} from their initial (a) to their final (b) position.
Break it into simpler sub-problems, we can get it in four steps:

1. Translate P_{1} to the origin
2. Rotate about the y-axis $\rightarrow P_{1} P_{2}$ lies in the (y, z) plane
3. Rotate about the x-axis $\rightarrow P_{1} P_{2}$ lies on the z-axis
4. Rotate about the z-axis $\rightarrow P_{1} P_{3}$ lies in the (y, z) plane

Step 3. Need to rotate about x-axis by Φ

$$
\begin{gathered}
R_{3}=R_{x}(\phi) \quad \cos \phi=\frac{z_{2}^{\prime \prime}}{D_{2}^{\prime}}, \sin \phi=\frac{y_{2}^{\prime \prime}}{D_{2}^{\prime}} \\
\text { where } \\
D_{2}=\left|P_{1}^{\prime \prime} P_{2}^{\prime \prime}\right|=\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
\end{gathered}
$$

Method 1

(a) Initial position

(b) Final position

Transforming P_{1}, P_{2}, and P_{3} from their initial (a) to their final (b) position.
Break it into simpler sub-problems, we can get it in four steps:

1. Translate P_{1} to the origin
2. Rotate about the y-axis $\rightarrow P_{1} P_{2}$ lies in the (y, z) plane
3. Rotate about the x-axis $\rightarrow P_{1} P_{2}$ lies on the z-axis
4. Rotate about the z-axis $\rightarrow P_{1} P_{3}$ lies in the (y, z) plane

Step 4. Need to rotate about z-axis by a

$$
\begin{aligned}
R_{4} & =R_{z}(\alpha) \\
\cos \alpha & =y_{3}^{\prime \prime \prime} / D_{3}, \quad \sin \alpha=x_{3}^{\prime \prime \prime} / D_{3}, \quad D_{3}=\sqrt{x_{3}^{\prime \prime 2}+y_{3}^{\prime \prime \prime 2}}
\end{aligned}
$$

So the final composited transformation is:

$$
R_{z}(\alpha) \cdot R_{z}(\phi) \cdot R_{y}(\theta-90) \cdot T\left(-x_{1},-y_{1},-z_{1}\right)
$$

Method 2

A generally useful quicker way to get the rotation matrix.

(a) Initial position

(b) Final position

Transforming P_{1}, P_{2}, and P_{3} from their initial (a) to their final (b) position.
To obtain the rotation matrix R using the properties of orthogonal matrices

1) Each row is a unit vector
2) Each row is perpendicular to the other
3) R's transpose is its inverse matrix
4) The $i^{\text {th }}$ row (except the last row) as a vector, will be rotated by $R(\theta)$ to lie on the positive axis \mathbf{e}_{i}

If R rotates a normalized vector v to e_{i}, then its $\mathrm{i}^{\text {th }}$ row is v^{\top}

1. we want to rotate $P_{1} P_{2}$ to " $+z$ "-axis, so the 3rd row should be the normalized $P_{1} P_{2}$:

$$
R_{z}=\left[\begin{array}{lll}
r_{1 z} & r_{2,} & r_{3,}
\end{array}\right]^{\mathrm{T}}=\frac{P_{1} P_{2}}{\left|P_{1} P_{2}\right|} .
$$

2. R_{x} unit vector is perpendicular to the plane of P_{1}, P_{2} and

P_{3}, and will rotate into the " $+x$ "-axis, so the $1^{\text {st }}$ row:

$$
\left[\begin{array}{cccc}
r_{1 s} & r_{2} & r_{3} & 0 \\
r_{1,} & r_{2,} & r_{3,} & 0 \\
r_{1 z} & r_{2 z} & r_{r_{z}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
2
$$

$$
R_{x}=\left[\begin{array}{lll}
r_{1,} & r_{2} & \left.r_{3},\right] \left.^{\mathrm{T}}=\frac{P_{1} P_{3} \times P_{1} P_{2}}{\mid P_{1} P_{3} \times P_{1} P_{2}} \right\rvert\,
\end{array}\right.
$$

3. Finally:

$$
R_{y}=\left[\begin{array}{lll}
r_{1 y} & r_{2,} & r_{3,}
\end{array}\right]^{\mathrm{T}}=R_{z} \times R_{x}
$$

Viewing in 3D

2D shapes \rightarrow window clip, translate, scale, translate \rightarrow 2D viewpor \dagger 3D shapes \rightarrow projection \rightarrow 2D viewport
(view volume clip \rightarrow projection \rightarrow 2D transform)

Conceptual model of the 3D viewing process.

Projections

Generally:

DProjections transform points in a n-D coordinate system into points in a m-D coordinate system ($m<n$)
-Computer Graphics has long been used for studying n-D objects by projecting them into lower dimensional (especially, 2D) space.

Noll, M. , "A Computer Technique for Displaying N-dimensional hyperobjects", CACM, 10(8), Aug. 1967, 469-473.

Here:

-We focus on projections from 3D to 2D.

(a)

(b)
(a) Line $A B$ and its perspective projection $A^{\prime} B^{\prime}$. (b) Line $A B$ and its parallel projection $A^{\prime} B^{\prime}$. Projectors $A A^{\prime}$ and $B B^{\prime}$ are parallel.
DProjection :
Istraight projection rays (projectors) emanating from a center of projection \square Passing through each point of the object
IIntersecting a projection plane to form the projection image

Classification of Projections

General Classification:

UWe deal with planar geometric projections
\square Non-planar projection: the projection plane is a curved surface (e.g. many cartographic projections)
\square Non-geometric projection: the projection rays are curved (e.g. the Omnimax film)

Planar Geometric Projections:
-Parallel projection: projection center is infinitely far away
Iso that all projectors are parallel
aWe only need to specify direction of projection
aPerspective projection: projection center is finite distance away
aNeed to specify projection center

(a) Line $A B$ and its perspective projection $A^{\prime} B^{\prime}$. (b) Line $A B$ and its parallel projection $A^{\prime} B^{\prime}$. Projectors $A A^{\prime}$ and $B B^{\prime}$ are parallel.

Classification of Projections

General Classification:

Planar Geometric Projections:

DPerspective projection:
\square Visually : perspective foreshortening (the object size varies inversely with the distance from the projection center), similar to
human visual system
\square Measurement:
Dnot good for recording exact shape,
Dangles are preserved only on those faces of the object parallel to the projection plane,
Uparallel lines generally are not projected to be parallel
\square Parallel projection:
aVisually : less realistic
DMeasurement:
Dgood for exact measurement,
Uparallel lines remain parallel,
Dangles only preserved on faces that are parallel to the projection plane
For more detailed discussions, check: Carlbom, I. and J. Paciorek, "Planar Geometric Projections and Viewing Transformations", Computing Surveys, 10(4), Dec. 1978, pp. 465-502.

Perspective Projections

DAny set of parallel lines, that are not parallel to the projection plane, converge to a vanishing point.
DAxis vanishing point: if the set of lines that converges is parallel to one of the three principal axes
-There are at most three such points
De.g. if the projection plane cuts only the z-axis, then only the z axis has a principal vanishing point (lines parallel to either x or y axes have no vanishing point)
aPerspective projections are categorized by \# of principal vanishing pts (i.e. by the \# of axes the projection plane cuts)

Two point perspective projection

Parallel Projections

-Categorized into two types, depending on the relation between (1) the direction of projection and (2) the normal to the projection plane:

Orthographic parallel projections: (1) and (2) have the same direction OOblique parallel projections: (1) and (2) have different directions

Orthographic Parallel projections:
DFront,top,side-elevation projections:
oOften used in engineering drawings
oDistances and angles can be measured oBut...
DAxonometric orthographic projections:
oProjections not normal to a principal axis oParallelism of lines preserved, angles not preserved oDistances can be measured along each principal axis (with different scales)
oA commonly used type: isometric projection
\rightarrow projction direction makes equal angles with each axis (e.g. direction $(1,1,1)$, every axis pair looks like 120 degree)

Parallel Projections (cont.)

-Categorized into two types, depending on the relation between (1) the direction of projection and (2) the normal to the projection plane:

Orthographic parallel projections: (1) and (2) have the same direction
OOblique parallel projections: (1) and (2) have different directions

Oblique Parallel projections:

Cavalier projections:
-Projection direction makes a 45° angle with the projection plane
\square Result: line perpendicular to the projection plane preserves length, no foreshortening
02 examples, right middle 2 figs.
direction: $(\sqrt{2} / 2, \sqrt{2} / 2,-1)$ and $(\sqrt{3} / 2,1 / 2,-1)$ projection plane: $\mathrm{z}=0$ plane
QCabinet projections:
\square Projection direction makes a 63.4° angle with the projection plane
aResult: line perpendicular to the projection plane has half length
DVisually more realistic, right bottom 2 figs direction: $(\sqrt{2} / 4, \sqrt{2} / 4,-1)$ and ($\sqrt{3} / 4,1 / 4,-1)$ projection plane: the $\mathrm{z}=0$ plane

Planar Geometric Projections

Specifying an 3D View

3D viewing $=$ view volume clip \rightarrow projection \rightarrow 2D transformation

1. Projection plane (also called view plane)

DDefined by a point on the plane (view reference point, VRP) + a normal to the plane (view-plane normal, VPN)
-3D viewing-reference coordinate (VRC) system:
OOrigin \rightarrow VRP
DOne axis of VRC \rightarrow VPN (now called the n axis)
\square Another axis \rightarrow view up vector (VUP), v-axis on the view plane
\square The last axis \rightarrow u-axis to form the right-handed system
2. A window on the view plane
a Contents projected outside of the window is not shown
Defined by a min and max window coordinates along two axes

Specifying an 3D View

3. The center and direction of projection (DOP) DDefined by a projection reference point (PRP) + an indicator of the projection type

IIf the projection type is "perspective", then PRP is the center of projection (COP)
-If the projection type is "parallel", then the DOP is from the PRP to center of the window on view plane (CW)
(CW might not be VRP, depending on max/min of (u,v))

View Volume

The View volume bounds that portion of the world that is to be clipped out and projected onto the view plane.

- For perspective projections:
a view volume \rightarrow semi-infinite pyramid with apex at the PRP and edges passing through the corners of the window
- Positions behind the center of projection are not projected
- For parallel projections:
- View volume \rightarrow infinite parallelepiped with sides parallel to the direction of projection (direction from the PRP to the center of the window)
- Limiting the view volume (for both projection types)
- To eliminate extraneous objects
- To eliminate unnecessary computation
- e.g. displaying distant objects in perspective projections
$>$ setup a front clipping plane and back clipping plane, specified by the signed quantities front distance (F) and back distance (B)

3D View Port

Now we have the view volume (decided by PRP, VRC system, window range u and v, F and B)
To map all contents onto the display surface:

- Map the view volume to the viewport rectangular window with a z-depth
- front (back) clipping plane $\rightarrow z_{\text {max }}\left(z_{\text {min }}\right)$
] $\mathrm{u}_{\text {min }}\left(\mathrm{u}_{\text {max }}\right)$ side of the view volume $\rightarrow x_{\text {min }}\left(x_{\text {max }}\right)$ plane
- $\mathrm{v}_{\text {min }}\left(\mathrm{v}_{\text {max }}\right)$ side of the view volume $\rightarrow \mathrm{y}_{\text {min }}\left(\mathrm{y}_{\text {max }}\right)$ plane
- To display images for all points after their projections, simply discard the z-component
- For visible surface detection: the hidden surface removal simply uses the z-component to determine which primitives are closer to viewer and should be visible

Matrix for Planar Geometric Projections

Start from the simplest cases:

- A perspective projection whose projection plane is normal to z-axis at $z=d$
- A parallel projection whose projection plane is the $z=0$ plane
\rightarrow Each projection can be defined as a 4 by 4 matrix (coherent with other transformation matrices)
...Later more general cases will be transformed to these cases.

Case 1. Perspective Projection

Case 1.1: projection plane at $z=d$, projection center at the origin, a point $P(x, y, z)$ to be projected onto it as $P_{p}\left(x_{p}, y_{p}, z_{p}=d\right)$

$$
\begin{aligned}
& \frac{x_{p}}{d}=\frac{x}{z} ; \quad \frac{y_{p}}{d}=\frac{y}{z} . \\
& x_{p}=\frac{d \cdot x}{z}=\frac{x}{z / d}, \quad y_{p}=\frac{d \cdot y}{z}=\frac{y}{z / d} .
\end{aligned}
$$

$$
M_{\mathrm{per}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]
$$

Case 1. Perspective Projection

Case 1.2: projection plane at $z=0$, the center of projection at $z=-d$, a point $P(x, y, z)$ to be projected onto it as $P_{p}\left(x_{p}, y_{p}, z_{p}=0\right)$

$$
\begin{gathered}
\frac{x_{p}}{d}=\frac{x}{z+d}, \quad \frac{y_{p}}{d}=\frac{y}{z+d} . \\
x_{p}=\frac{d \cdot x}{z+d}=\frac{x}{(z / d)+1}, \\
y_{p}=\frac{d \cdot y}{z+d}=\frac{y}{(z / d)+1} . \\
M_{\text {per }}^{\prime}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 / d & 1
\end{array}\right] .
\end{gathered}
$$

Case 2. Parallel Projection

Case 2.1: orthographic projection onto projection plane at $z=0$

$$
\begin{gathered}
x_{p}=x, \quad y_{p}=y, \quad z_{p}=0 . \\
M_{\text {ort }}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

Case 3. A More General Projection

Case 3.1: a perspective projection $P(x, y, z) \rightarrow P_{p}\left(x_{p}, y_{p}, z_{p}\right)$
a projection plane is perpendicular to z axis

- the center of projection (COP) has the distance Q from the point ($0,0, z_{p}$)
- the direction from $\left(0,0, z_{p}\right)$ to COP is the normalized $\left(d_{x}, d_{y}, d_{z}\right)$

$$
\mathrm{P}_{\mathrm{p}}=(1-\mathrm{t}) \mathrm{COP}+\mathrm{tP}, \quad 0<=\mathrm{t}<=1
$$

$$
\begin{aligned}
& x_{p}=\frac{x-z \frac{d_{z}}{d_{z}}+z_{p} \frac{d_{x}}{d_{z}}}{\frac{z_{p}-z}{Q d_{z}}+1}, \\
& y_{p}=\frac{y-\frac{d_{y}}{d_{z}}+z_{p} \frac{d_{y}}{d_{z}}}{\frac{z_{p}-z}{Q d_{z}}+1} .
\end{aligned} M_{\text {general }}=\left[\begin{array}{cccc}
1 & 0 & -\frac{d_{x}}{d_{z}} & z_{p} \frac{d_{x}}{d_{z}} \\
0 & 1 & -\frac{d_{y}}{d_{z}} & z_{p} \frac{d_{y}}{d_{z}} \\
0 & 0 & -\frac{z_{p}}{Q d_{z}} & \frac{z_{p}^{2}}{Q d_{z}}+z_{p} \\
0 & 0 & -\frac{1}{Q d_{z}} & \frac{z_{p}}{Q d_{z}}+1
\end{array}\right]
$$

$C O P=\left(0,0, z_{p}\right)+Q\left(d_{x}, d_{y}, d_{z}\right)$

$$
t=\frac{z_{p}-\left(z_{p}+Q d_{z}\right)}{z-\left(z_{p}+Q d_{z}\right)}
$$

$$
z_{p}=z_{p} \frac{\frac{z_{p}-z}{Q d_{z}}+1}{\frac{z_{p}-z}{Q d_{z}}+1}=\frac{-z \frac{z_{p}}{Q d_{z}}+\frac{z_{p}^{2}+z_{p} Q d_{z}}{Q d_{z}}}{\frac{z_{p}-z}{Q d_{z}}+1}
$$

Case 3. A More General Projection

Case 3.2: a parallel projection but not orthographic

- Cavalier and Cabinet projection onto the (x, y) plane, with a angle shown below.

$$
M_{\text {general }}=\left[\begin{array}{cccc}
1 & 0 & -\frac{d_{x}}{d_{z}} & z_{p} \frac{d_{x}}{d_{z}} \\
0 & 1 & -\frac{d_{y}}{d_{z}} & z_{p} \frac{d_{y}}{d_{z}} \\
0 & 0 & -\frac{z_{p}}{Q d_{z}} & \frac{z_{p}^{2}}{Q d_{z}}+z_{p} \\
0 & 0 & -\frac{1}{Q d_{z}} & \frac{z_{p}}{Q d_{z}}+1
\end{array}\right]
$$

	Z_{p}	Q	d_{x}	d_{y}	d_{z}
Cavalier (left)	0	Infinity	$\cos \alpha$	$\sin \alpha$	-1
Cabinet (right)	0	Infinity	$(\cos \alpha) / 2$	$(\sin \alpha) / 2$	-1

Case 3. A More General Projection

Therefore, this is a general representation (for projection plane $z=0, \ldots$ etc):

The following table includes previously derived projection matrixes.

$$
M_{\text {general }}=\left[\begin{array}{cccc}
1 & 0 & -\frac{d_{x}}{d_{z}} & z_{p} \frac{d_{x}}{d_{z}} \\
0 & 1 & -\frac{d_{y}}{d_{z}} & z_{p} \frac{d_{y}}{d_{z}} \\
0 & 0 & -\frac{z_{p}}{Q d_{z}} & \frac{z_{p}^{2}}{Q d_{z}}+z_{p} \\
0 & 0 & -\frac{1}{Q d_{z}} & \frac{z_{p}}{Q d_{z}}+1
\end{array}\right]
$$

	Z_{p}	Q	d_{x}	d_{y}	d_{z}
$M_{\text {cavalier }}$	0	Infinity	$\cos \alpha$	$\sin \alpha$	-1
$M_{\text {cabinet }}$	0	Infinity	$(\cos \alpha) / 2$	$(\operatorname{sos} \alpha) / 2$	-1
$M_{\text {ort }}$	0	Infinity	0	0	-1
$M_{\text {per }}$	d	d	0	0	-1
$M_{\text {per }}^{\prime}$	0	d	0	0	-1

3D Viewing Process

Implementing Planar Geometric Projections

For Computational efficiency!
Certain view volumes are easier to clip against (canonical view volumes):
\square For parallel-projection view volume:
(x, y, z) in $\{([-1,1],[-1,1],[-1,0])\}$
\square For perspective-projection view volume:
(x, y, z) in $\left\{[-z, z],[-z, z],\left[-z_{\text {min }},-1\right]\right\}$
Normalizing transformations $\mathrm{N}_{\text {par }}$ and $\mathrm{N}_{\text {per }}$
transform an arbitrary view volume into the canonical view volumes

(a) Parallel

(b) Perspective

Normalizing Transformation Matrix $\mathrm{N}_{\text {par }}$

Derive $N_{\text {par }}$ for the most general case \rightarrow the oblique parallel projection General Pipeline:

1. Translate the VRP to the origin
2. Rotate VRC : the (u, v, n)-axis (VPN) $\rightarrow(x, y, z)$-axis
3. Shear : the direction of projection (DOP) $\rightarrow z$-axis
4. Translate and scale into the parallel-projection canonical view volume

View-orientation matrix \leftarrow step 1, 2
View-mapping matrix \leftarrow step 3,4

Example (see the figure in the next page)

1. Translation T(-VRP)
2. Rotation R (vectors $u, v, n \rightarrow x, y, z$)
3. $\mathrm{DOP}=\mathrm{CW}-\mathrm{PRP}=\left[\begin{array}{lllll}\frac{u_{\max }+u_{\min }}{2} & \frac{v_{\max }+v_{\text {min }}}{2} & 0 & 1\end{array}\right]^{T}-\left[\begin{array}{llll}p r p_{u} & p_{p} p_{v} & \text { prp }_{n} & 1\end{array}\right]^{T}$

The shear: $\operatorname{Sh}_{x y}\left(\operatorname{sh} x_{\text {par }}\right.$, shy $\left._{\text {par }}\right) \longrightarrow S H_{x y}\left(s h x_{p a r}, s h y_{p a r}\right)=$
4. Translation: $T_{\text {par }}=T\left(-\frac{u_{\text {max }}+u_{\text {min }}}{2},-\frac{v_{\text {max }}+v_{\text {min }}}{2},-F\right)$
and Scaling: $S_{\text {par }}=S\left(\frac{2^{2}}{u_{\max }-u_{\text {min }}}, \frac{2}{v_{\text {max }}-v_{\text {min }}}, \frac{1}{F-B}\right) \quad \quad s h x_{p_{p a r}}=-\frac{d o p_{x}}{d o p_{z}}, s h y_{p_{p a r}}=-\frac{d o p_{y}}{d o p_{z}}$

Normalizing Transformation Matrix $\mathrm{N}_{\text {par }}$

Normalizing Transformation Matrix $\mathbf{N}_{\text {ner }}$

General Pipeline:

1. Translate the VRP to the origin
2. Rotate VRC : the (u, v, n)-axis $(V P N) \rightarrow(x, y, z)$-axis
3. Translate : COP (given by PRP) \rightarrow origin
4. Shear: the center line of the view volume $\rightarrow z$ axis
5. Scale into the canonical view volume

Example

1. Same as $\mathrm{N}_{\mathrm{par}}$
2. Same as $\mathrm{N}_{\mathrm{par}}$

3. T(-PRP)
4. Center line $=C W-P R P=\left[\begin{array}{llll}\frac{u_{\max }+u_{\min }}{2} & \frac{v_{\max }+v_{\text {min }}}{2} & 0 & 1\end{array}\right]^{T}-\left[\begin{array}{llll}p r p_{u} & p r p_{v} & p_{1} p_{n} & 1\end{array}\right]^{T}$
\rightarrow Shear (same as $\mathrm{N}_{\mathrm{par}}$)
5. Scaling: $\quad S_{\text {per }}=S\left(\frac{2 v r p_{z}^{\prime}}{\left(u_{\max }-u_{\min }\right)\left(v r p_{z}^{\prime}+B\right)}, \frac{2 v r p_{z}^{\prime}}{\left(v_{\max }-v_{\min }\right)\left(v r p_{z}^{\prime}+B\right)}, \frac{-1}{v r p_{z}^{\prime}-B}\right)$

Clipping Against a Canonical View Volume

3D world-
coordinate
output
primitives

2D device coordinates

- Geometric Clipping Algorithm
- Clipping in Homogeneous Coordinates

Projection Transformations in OpenGL

- Perspective Projection

Viewing Coordinate System (VCS)

Projection Transformations in OpenGL (cont.)

- Perspective Projection
- void gIFrustum(double left, double right, double bottom, double top, double near, double far);

- void gluPerspective(double fovy, double aspect, double near, double far);

Projection Transformations in OpenGL (cont.)

- Orthographic Projection
- void glOrtho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble zNear, GLdouble zFar);
- void gluOrtho2D (GLdouble left, GLdouble right, GLdouble bottom, GLdouble top);
- Routines:

- First, put:
glMatrixMode(GL_PROJECTION); gILoadIdentity();
- Then, put one of: glFrustrum/gluPerspective or glOrtho

