
Lecture 4-5Lecture 4-5
Transformations, Projections, and Viewing



1 1 Points and Vectors1.1 Points and Vectors
Points 

A solid object with infinitely small size
a mathematical abstraction 

Use points to define locations, to describe trajectories of p j
objects, and model geometric shapes…

Vectors
Length (magnitude) + direction  :  e g  velocityLength (magnitude) + direction  :  e.g. velocity
Add two vectors parallelogram rule of analytical 
geometry 
Multiply a vector by a scalar change magnitude not Multiply a vector by a scalar change magnitude not 
direction
Vectors and their operations (addition and scalar 
multiplication) a vector spacemultiplication) a vector space



1 1 Points and Vectors1.1 Points and Vectors
Points and Vectors

Pick an origin o, each point p
corresponds to a vector x
( i  h d d fi   l th d  (since each p and o defines a length and a 
direction)

produces vectors by point difference

The correspondence depends on the 
origing

y = x + δ, δ= q – o



1 1 P int Sp c V ct r Sp c
inner product (dot product): xy

1.1 Point Space Vector Space

norm (length) of a vector:
a unit vector  length equals unity

th l t  d t d t i  orthogonal vectors dot product is zero
orthonormal bases (largest sets of unit vectors, 
pairwise orthogonal)p g )
In such a basis {e1,e2,…,en}: 

x = x1e1+x2e2+…+xnen

th  i  d t:the inner product:

and the length becomes:



1 2 frame
Points correspond to Vectors, given a fixed origin

1.2 frame

Vectors correspond to column matrices, given a fixed basis
Represent points using column matrices
  (  b )  ll d  f   d  A pair (origin, basis) is called a frame, or coordinate 

system
For a fixed frame  points column matrices For a fixed frame, points column matrices 
(elements of the matrix are called the coordinates of 
the point in that frame)



1 3 cross product
Useful especially in 3D, defined in a right-handed, 

th n m l  3 D b sis:

1.3 cross product

orthonormal , 3-D basis:

C ss p d t f t  p ll l t s is Cross product of two parallel vectors is zero
Otherwise, its magnitude = the area of the parallelogram, its 
direction is perpendicular to both vectors
For completing a 3D orthonormal basis when two of its vectors For completing a 3D orthonormal basis when two of its vectors 
are known



2  Transformations
Moving, scaling, and deforming objects are fundamental 

   d l

2. Transformations

operations in geometric modeling.
If objects are considered as sets of points, what we need 
are transformations that map points onto other pointsf p p p

…Start with some basic transformations…

Computing Transformation is important because we want:Computing Transformation is important because we want:
To compute/represent transformations when necessary

For rendering, interactive visualization
Other visual computing applicationsmp g pp

To analyze shapes under transformation
Find invariant shape properties under various transformations 
(applications: shape descriptors for shape retrieval, object 
recognition  object tracking/localization )

geometry is the study of invariants under transformations

recognition, object tracking/localization…)



2 1 Li  T f ti
A transformation is linear  if it distributes over linear 

b  

2.1 Linear Transformations

combinations, i.e.

Computing Linear Transformation changing between two Computing Linear Transformation changing between two 
bases
For a fixed basis E, each transformation to a new basis F 
corresponds to a square matrix
Solving a square matrix that maps a basis to another basis is 
not difficult ff



2 1 Li  T f ti
A transformation is linear  if it distributes over linear 

b  

2.1 Linear Transformations

combinations, i.e.

Suppose we have two basesSuppose we have two bases

And we want to find the linear transformation:

What is the effect of such a 
t f ti    bit  t ?transformation on an arbitrary vector?

Following the linearity definition:



2 1 Li  T f ti  ( t )2.1 Linear Transformations (cont.)

Meaning the components of y in basis E are

These two equations show:
  f d b  E  h f  d   For a fixed basis E, each transformation corresponds to 

a square matrix (correspondence between linear 
transformation and square matrices)
They give us computational tools for evaluating They give us computational tools for evaluating 
transformation effect on a vector (simply multiply the 
corresponding matrix)
The way to construct this matrix mapping a basis to The way to construct this matrix mapping a basis to 
another basis is convenient



2.1 Linear Transformations 
(E l )(Example)

A Rotation Example:
d  f   ll  h d Coordinate frames are usually attached 

to objects, suppose we want to orient 
left rectangle such that it aligns with 
the right rectangleg g
E.g. find transformation T such that

T(e1)=f1, T(e2)=f2
Solve a linear system, 
b d  l  based on elementary 
trigonometry
M*e1 = f1, M*e2=f2



2 1 S ifi  Li  T f ti2.1 Specific Linear Transformations
Several most common linear 2D transformations

Scaling
Rotation

hShear
Reflection  -- scaling with negative factors

o Orthographic projectiono Orthographic projection



2 1 1 S li2.1.1 Scaling

2D Transformation matrix: 
Scaling a vector:  g

Scaling factors: a and b, along x and y axes
If a=b uniform (isotropic) scaling

h  d  l  i  h dshape preserved, only size changed
If a=b=1 identity transform

Directly extendible to 3DDirectly extendible to 3D



2 1 2 R t ti  d Sh2.1.2 Rotation and Shear
Rotation in 2D:

Shear: let one of the off-diagonal elements of the 
scaling transformation matrix be non-zero



2.1.3 Reflection and Orthographic 
P j tiProjection

Reflection = scaling with negative factorsg g

O h hi  P j iOrthographic Projection

Does not map a basis onto another basis
Singular transformation (can’t be inverted, lost all 
depth information along a direction)depth information along a direction)



2 2 T l ti2.2 Translation
simplyp y
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Not a linear transformation
(can’t be computed by 2*2 matrix multiplication)

Affine Transformations
= translations + non-degenerate linear transformations

Rigid Transformations = translations + rotations
If a transformation preserves distance called If a transformation preserves distance called 
isometries



2 3 Rotation/Scaling Center2.3 Rotation/Scaling Center
They are about the origin 

R t ti  th  h l   t t
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Rotation: the whole space rotates
Scaling: the object will be farther 
or closer to the origin depending 
on the scales
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on the scales
To transform around the shape 
center, or an any given point p:  
(3 t  C iti )(3-step Composition)

1) Translate p to the origin
2) Conduct the transformation

T l  h  b  b k3) Translate the object back



2.4 Homogeneous Coordinates

Translations and linear transformations can be treated 
more uniformly if we introduce a different system of m f m y f ff y m f
coordinates: homogeneous coordinates. 
Use the 2D example in the following, but can be 
generalized to n-D straightforwardlygeneralized to n-D straightforwardly.

1  introduce an additional component and associate with the 1. introduce an additional component and associate with the 
vector x the column matrix:

X*  homogeneous coordinates



2.4 Homogeneous Coordinates (cont.)

2. Also add a third row and column to the linear 
transformation matrix                          i.e.f m m

3  Multiply this augmented matrices  and get:3. Multiply this augmented matrices, and get:

Nothing changed so far.

When elements of the third column become non-zero:
e.g.

We get:



2.4 Homogeneous Coordinates (cont.)

Now we have uniform treatment of translation and rotation 
only one procedure needed to process bothonly one procedure needed to process both
one matrix-multiplication hardware works for both
Also deal with projections  (for displaying 3D objects, 
later)later)



2.4 Homogeneous Coordinates (cont.)

(1) generalize the coordinates of an Euclidean point p:

-- Geometric Interpretation

( ) g p p

Increase the dimension of the original space by 1
The original standard Euclidean plane is at w=1The original standard Euclidean plane is at w 1



2.4 Homogeneous Coordinates (cont.)

(2) Connect p with the origin (get line L)

-- Geometric Interpretation

( ) p g (g )
Each p corresponds to one line L, any 
point on L differ with p by a scaling 
W   l li  th  di t  We can always normalize the coordinates 
to



2.4 Homogeneous Coordinates (cont.)
-- Geometric Interpretation

The set of all lines through the origin of 
u  uxili  3D sp c  is c ll d th  our auxiliary 3D space is called the 

projective plane.
The elements of the projective plane are 

ll d p j ti  p ints  (n t  th   called projective points. (note they are 
actually lines)
Each Euclidean point p has a corresponding 
li  L d j ti  i t *line L and projective point p*
Therefore, we can manipulate Euclidean 
points through operations on their 

j ti  t tsprojective counterparts.
(see the diagram on the right: 

an affine transform T
= Imbed + projective transform + normalize)



Composition of Transformations

With homogeneous coordinates, affine transformations and their 
iti  b  t d b  t i  d th i  d tcomposition can be represented by matrices and their product

E lExamples:
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Rigid Transformation
product of an arbitrary sequence of rotation and translation matrices product of an arbitrary sequence of rotation and translation matrices 

preserving length, angles
Affine transformation 

product of an arbitrary sequence of rotation, translation, scale, and 
h  

p y q
shear matrices
preserving parallelism



Composition of Transformations (cont.)

Combine fundamental R, S, and T matrices produce desired 
general affine transformation
Gain efficiency by applying a single composed transformation, 
rather than a series of transformations

Examples: Rotating a house about a point P1 by an angle p g p 1 y g



2D Window-To-Viewport Transformation

We get objects (2D) represented in world-coordinate system
We need to map them onto screen coordinates
A common question:

Given a rectangular region in world coordinates (world-coordinate window)
A corresponding rectangular region in screen coordinates (viewport)
To find the transformation To find the transformation 

Sometimes, we want shape-preserving: make su=sv


