Lecture 4-5

Transformations, Projections, and Viewing

1.1 Points and Vectors

* Points
A solid object with infinitely small size
- a mathematical abstraction
dUse points to define locations, to describe trajectories of
objects, and model geometric shapes...
e Vectors
* Length (magnitude) + direction : e.g. velocity
* Add two vectors = parallelogram rule of analytical
geometry

e Multiply a vector by a scalar - change magnitude not
direction

» Vectors and their operations (addition and scalar
multiplication) > a vector space

1.1 Points and Vectors

 Points and Vectors
aPick an origin o, each point p
corresponds to a vector x

(since each p and o defines a length and a x
direction) Iy
- produces vectors by point difference

QThe correspondence depends on the
origin o
— — Change of origin
y=x+0,0=9q-0 SO

1.1 Point Space->Vector Space

e inner product (dot product): xy

e norm (length) of a vector: Ixl=vx.x

* a unit vector < length equals unity
 orthogonal vectors < dot product is zero

e orthonormal bases (largest sets of unit vectors,
pairwise orthogonal)
In such a basis {e4.e,,....e.}:
X = X,€4HX.e,%.. . X €,

the inner product:
P xy=XY=xv+X, ++X,3

n.'n

and the length becomes: — ;
|x|=\/,r, + X X

1.2 frame

* Points correspond to Vectors, given a fixed origin
» Vectors correspond to column matrices, given a fixed basis

=> Represent points using column matrices
* A pair (origin, basis) is called a frame, or coordinate
system

e For a fixed frame, points = column matrices
(elements of the matrix are called the coordinates of
the point in that frame)

1.3 cross product

» Useful especially in 3D, defined in a right-handed,
orthonormal , 3-D basis:

XXy =(XV —X3),)e, + (X359, —XV3)e, +(Xy, — X,V,)e,

e2

, e, xe =e,
e ‘ i -
- N
o Y e, xe =e,

> Cross product of two parallel vectors is zero

> Otherwise, its magnitude = the area of the parallelogram, its
direction is perpendicular to both vectors

> For completing a 3D orthonormal basis when two of its vectors
are known

2. Transformations

* Moving, scaling, and deforming objects are fundamental
operations in geometric modeling.

o If objects are considered as sets of points, what we need
are transformations that map points onto other points

..Start with some basic transformations...

Computing Transformation is important because we want:
0O To compute/represent transformations when necessary
O For rendering, interactive visualization
0 Other visual computing applications
O To analyze shapes under transformation

a Find invariant shape properties under various transformations
(applications: shape descriptors for shape retrieval, object
recognition, object tracking/localization...)

2.1 Linear Transformations

e A transformation is linear if it distributes over linear

COI’\'\bIHGTIOnS, 1.€. T((_?x + by) — (_IT(I)+ [}T(y)

» Computing Linear Transformation - changing between two
bases

e For a fixed basis E, each transformation to a new basis F
corresponds to a square matrix

* Solving a square matrix that maps a basis to another basis is
not difficult

2.1 Linear Transformations

e A transformation is linear if it distributes over linear
combinations, i.e. T(ax +by) = aT () + bT(y)

» Suppose we have two bases E=le, - e
F=[fi = f]
e And we want to find the linear transformation:
4 T (e)=f, i=1...n

e What is the effect of such a
r transformation on an arbitrary vector?

y :Te{f(x) x=EX"

el

» Following the linearity definition:
& y=ly(x)= []Lf(f?]) e e,)]X(J - [f, fu]Xg

2.1 Linear Transformations (cont.)

y =Ty =[Tyte) = Tep]X =[f; = f]X
= Yy :[EFI" EE:?]X" :E[F;’ F:]XE
* Meaning the components of y in basis E are M = [Flf F::]
Yo =MX

» These two equations show:

» For a fixed basis E, each transformation corresponds to
a square matrix (correspondence between linear
transformation and square matrices)

* They give us computational tools for evaluating
transformation effect on a vector (simply multiply the
corresponding matrix)

* The way to construct this matrix mapping a basis to
another basis is convenient

~
(Example)

A Rotation Example:

the right rectangle

o T(el)=f1, T(e2)=f2

e Coordinate frames are usual I attached
to objects, suppose we wanT o orient
left r'ec’rangle such that it aligns with

2.1 Linear Transformations

[,

= Solve a linear system,
based on elementary
trigonometry

= M*el = f1, M*e2=f2

» E.g. find transformation T such that

r1

E sin 6 - 0056} - {sinﬁ}
i ' |sin® |7 % | cosB®
T
el e [cos® —sinB |
B [sine cosO J

2.1 Specific Linear Transformations

» Several most common linear 2D transformations
3 Scaling
0 Rotation
3 Shear
= Reflection -- scaling with negative factors
o Orthographic projection

2.1.1 Scaling

A

e 2D Transformation matrix: ["; ﬂ

e Scaling a vector: E ﬂﬂjﬂ
* Scaling factors: a and b, along x and y axes
e If a=b > uniform (isotropic) scaling
shape preserved, only size changed
o If a=b=1 - identity tfransform

» Directly extendible to 3D

o

2.1.2 Rotation and Shear

e Rotation in 2D:
g=—30
{cosﬁ —sin0’]
sin cosB !

e Shear: let one of the off-diagonal elements of the
scaling transformation matrix be non-zero

o a=1
o SL h_—"' k

-

2.1.3 Reflection and Orthographic
Projection

* Reflection = scaling with negative factors

A A
1 0T [-x]
e Orthographic Projection
10T« [y — ‘
0 oly/7lo]

* Does not map a basis onto another basis

 Singular transformation (can't be inverted, lost all
depth information along a direction)

~

2.2 Translation

o simply

Mz L*L'

* Not a linear transformation
(can't be computed by 2*2 matrix multiplication)

0 Affine Transformations

= translations + non-degenerate linear transformations

QRigid Transformations = translations + rotations

a If a transformation preserves distance - called
Isometries

2.3 Rotation/Scaling Center

e They are about the origin
Rotation: the whole space rotates
Scaling: the object will be farther
or closer to the origin depending
on the scales

* To transform around the shape

center, or an any given point p:
(3-step Composition)

Translate p to the origin

X S

y
Conduct the transformation ?:
Translate the object back - Q
- @5 (.5
MER NS R N .

Before scaling

x| [cos@® —sind] x
y'| [sin@ cos@ |y

MR WER

<

.-.
»n
alo
S

(3)

TrTTTrrrTrTrTT

N T T T I
After scaling

/

-

2.4 Homogeneous Coordinates

* Translations and linear transformations can be treated
more uniformly if we introduce a different system of
coordinates: homogeneous coordinates.

» Use the 2D example in the following, but can be
generalized to n-D straightforwardly.

1. infroduce an additional component and associate with the
vector x the column matrix:

X HES
=1) _| 1 |
]

X* - homogeneous coordinates

N

2.4 Homogeneous Coordinates (cont.)

2. Also add a third row and column to the linear

transformation matrix « b 0] l.e. M 0]
¢ d 0 =l 1
I_D 0 1‘

3. Multiply this augmented matrices, and get:

M 01X TMX] Y

MX - “Lo Tl LY Nothing changed so far.
e When elements of the third column become non-zero:
8.9. 1 0 al
M=01 b
0 0 1_‘
° Wege’r: 1 0 allx] x+al
Y'=MX =0 1 bjjv = v+bh
o o 1l L1 |

~

-
2.4 Homogeneous Coordinates (cont.)

* Now we have uniform treatment of translation and rotation
 only one procedure needed to process both
» one matrix-multiplication hardware works for both

 Also deal with projections (for displaying 3D objects,
later)

-

2.4 Homogeneous Coordinates (cont.)
-- Geometric Interpretation

(1) generalize the coordinates of an Euclidean point p:

X
P = v ‘
[w |
d Increase the dimension of the original space by 1

d The original standard Euclidean plane is at w=1
AV

]

~

-

2.4 Homogeneous Coordinates (cont.)
-- Geometric Interpretation

(2) Connect p with the origin (get line L)

3 Each p corresponds to one line L, any
point on L differ with p by a scaling

d We can always normalize the coordinate
to [x/w]

viw

L1

AV

™

~

N
2.4 Homogeneous Coordinates (cont.)

-- Geometric Interpretation

A
0 The set of all lines through the origin of o y

our auxiliary 3D space is called the T~
projective plane.

0 The elements of the projective plane are
called projective points. (note they are
actually lines)

A Each Euclidean point p has a corresponding
line L and projective point p*

0 Therefore, we can manipulate Euclidean T
points through operations on their P
projective counterparts. - T Normalize
(see the diagram on the right: . .

an affine fransform T T

= Imbed + projective transform + normalize)

/

4 N
Composition of Transformations

With homogeneous coordinates, affine transformations and their
composition can be represented by matrices and their product

Examples:

1 dxl 1 dxl + dx2 Sx2 Sx Sx1*Sx2
1 d,|= 1 d,+d, Sy2 J Sy2 = Sy1°Sy2
1 1 1 1 1

O Rigid Transformation
0 & product of an arbitrary sequence of rotation and translation matrices
O preserving length, angles

O Affine transformation

QO € product of an arbitrary sequence of rotation, translation, scale, and
shear matrices

O preserving parallelism

_ /

-

Composition of Transformations (cont.)

0 Combine fundamental R, S, and T matrices - produce desired

general affine transformation

0 Gain efficiency by applying a single composed fransformation,

rather than a series of transformations

y y

| Q
P1
* X q

Examples: Rotating a house about a point P, by an angle

Original house
of P, 1o origin

T(x;, v)) * R(O) - T(—x, =y) =

After translation

{ !
P1
X o > X
- After rotation X After transiation -
to original P,
1 0 x| [cosé —sing@ 0] [1 0 —x
0 I y|-|sin@ cos@ Of-|0 1 =y
0 0 1 0 0 1] (00 1

sinf cos@ y(1 — cosf) — x;sinf|.

cos@ —sind x(1 — cosf) + ylsinﬂl

0 0 l

~

-

0 A common question:

max » Ymex)

[]

(X i s ¥ min)

* X

Window in
world coordinates

<

<

> <

0 We get objects (2D) represented in world-coordinate system
0 We need to map them onto screen coordinates

2D Window-To-Viewport Transformation

O Given a rectangular region in world coordinates (world-coordinate window)
O A corresponding rectangular region in screen coordinates (viewport)
O To find the transformation

Maximum
range
of screen

(Emv vrnu)

[]

(Umin + Yenin)

coordinates

> X

Window translated
to origin

Sometimes, we want shape-preserving: make s =s_

> U

Window scaled to
size of viewport

* U

Translated by (Vpin,
Vmin) 10 final position

/

