Lecture 4-5

Transformations, Projections, and Viewing

1.1 Points and Vectors

- Points
\square A solid object with infinitely small size \rightarrow a mathematical abstraction
\square Use points to define locations, to describe trajectories of objects, and model geometric shapes...
- Vectors
- Length (magnitude) + direction : e.g. velocity
- Add two vectors \rightarrow parallelogram rule of analytical geometry
- Multiply a vector by a scalar \rightarrow change magnitude no \dagger direction
- Vectors and their operations (addition and scalar multiplication) \rightarrow a vector space

1.1 Points and Vectors

- Points and Vectors
\square Pick an origin o, each point p
corresponds to a vector x
(since each p and o defines a length and a direction)
\rightarrow produces vectors by point difference
\square The correspondence depends on the origin

$$
\square y=x+\delta, \delta=q-0
$$

Change of origin

1.1 Point Space \rightarrow Vector Space

- inner product (dot product): xy
- norm (length) of a vector: $|x|=\sqrt{x . x}$
- a unit vector \leqslant length equals unity
- orthogonal vectors \leftarrow dot product is zero
- orthonormal bases (largest sets of unit vectors, pairwise orthogonal)
In such a basis $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{n}\right\}$:
- $\boldsymbol{x}=\mathrm{x}_{1} \mathrm{e}_{1}+\mathrm{x}_{2} \mathrm{e}_{2}+\ldots+\mathrm{x}_{\mathrm{n}} \mathrm{e}_{\mathrm{n}}$
- the inner product:

$$
\boldsymbol{x} \cdot \boldsymbol{y}=X^{t} Y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

and the length becomes:

$$
|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

1.2 frame

- Points correspond to Vectors, given a fixed origin
- Vectors correspond to column matrices, given a fixed basis
\rightarrow Represent points using column matrices
- A pair (origin, basis) is called a frame, or coordinate system
- For a fixed frame, points \rightarrow column matrices (elements of the matrix are called the coordinates of the point in that frame)

1.3 cross product

- Useful especially in 3D, defined in a right-handed, orthonormal, 3-D basis:

$$
\boldsymbol{x} \times \boldsymbol{y}=\left(x_{2} y_{3}-x_{3} y_{2}\right) \boldsymbol{e}_{1}+\left(x_{3} y_{1}-x_{1} y_{3}\right) \boldsymbol{e}_{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right) \boldsymbol{e}_{3}
$$

$$
\begin{aligned}
& \boldsymbol{e}_{1} \times \boldsymbol{e}_{2}=\boldsymbol{e}_{3} \\
& \boldsymbol{e}_{2} \times \boldsymbol{e}_{3}=\boldsymbol{e}_{1} \\
& \boldsymbol{e}_{3} \times \boldsymbol{e}_{1}=\boldsymbol{e}_{2}
\end{aligned}
$$

>Cross product of two parallel vectors is zero
> Otherwise, its magnitude $=$ the area of the parallelogram, its direction is perpendicular to both vectors
>For completing a 3D orthonormal basis when two of its vectors are known

2. Transformations

- Moving, scaling, and deforming objects are fundamental operations in geometric modeling.
- If objects are considered as sets of points, what we need are transformations that map points onto other points
...Start with some basic transformations...
Computing Transformation is important because we want:
- To compute/represent transformations when necessary
\square For rendering, interactive visualization
- Other visual computing applications
\square To analyze shapes under transformation
\square Find invariant shape properties under various transformations (applications: shape descriptors for shape retrieval, object recognition, object tracking/localization...)

2.1 Linear Transformations

- A transformation is linear if it distributes over linear combinations, i.e.

$$
\boldsymbol{T}(a \boldsymbol{x}+b \boldsymbol{y})=a \boldsymbol{T}(\boldsymbol{x})+b \boldsymbol{T}(\boldsymbol{y})
$$

- Computing Linear Transformation \rightarrow changing between two bases
- For a fixed basis E, each transformation to a new basis F corresponds to a square matrix
- Solving a square matrix that maps a basis to another basis is not difficult

2.1 Linear Transformations

- A transformation is linear if it distributes over linear combinations, i.e.

$$
\boldsymbol{T}(a \boldsymbol{x}+b \boldsymbol{y})=a \boldsymbol{T}(\boldsymbol{x})+b \boldsymbol{T}(\boldsymbol{y})
$$

- Suppose we have two bases

$$
\begin{aligned}
& E=\left[\begin{array}{lll}
e_{1} & \cdots & e_{n}
\end{array}\right] \\
& F=\left[\begin{array}{lll}
f_{1} & \cdots & f_{n}
\end{array}\right]
\end{aligned}
$$

- And we want to find the linear transformation:

$$
\boldsymbol{T}_{e f}\left(\boldsymbol{e}_{i}\right)=\boldsymbol{f}_{i}, \quad i=1, \ldots, n
$$

- What is the effect of such a transformation on an arbitrary vector?

$$
\boldsymbol{y}=\boldsymbol{T}_{e f}(\boldsymbol{x}) \quad \boldsymbol{x}=E X^{e}
$$

- Following the linearity definition:

$$
\boldsymbol{y}=\boldsymbol{T}_{e f}(\boldsymbol{x})=\left[\begin{array}{lll}
\boldsymbol{T}_{e f}\left(\boldsymbol{e}_{1}\right) & \cdots & \boldsymbol{T}_{e f}\left(\boldsymbol{e}_{n}\right)
\end{array}\right] X^{e}=\left[\begin{array}{lll}
f_{1} & \cdots & f_{n}
\end{array}\right] X^{e}
$$

2.1 Linear Transformations (cont.)

- Meaning the components of y in basis E are

$$
M^{e}=\left[\begin{array}{lll}
F_{1}^{e} & \cdots & F_{n}^{e}
\end{array}\right]
$$

$$
Y^{e}=M^{e} X^{e}
$$

- These two equations show:
- For a fixed basis E, each transformation corresponds to a square matrix (correspondence between linear transformation and square matrices)
- They give us computational tools for evaluating transformation effect on a vector (simply multiply the corresponding matrix)
- The way to construct this matrix mapping a basis to another basis is convenient

$$
\begin{aligned}
& y=T_{f}(x)=\left[\begin{array}{lll}
T_{f}\left(\varphi_{1}\right) & \cdots & T_{f}\left(e_{n}\right)
\end{array}\right] x^{e}=\left[\begin{array}{lll}
f_{1} & \cdots & f_{n}
\end{array}\right] x^{e} \\
& y=\left[\begin{array}{lllll}
E F_{1}^{e} & \cdots & \left.E F_{n}^{e}\right] X^{e}=\left[\begin{array}{lll}
F_{1}^{e} & \cdots & F_{n}^{e}
\end{array}\right] X^{e}
\end{array}\right.
\end{aligned}
$$

2.1 Linear Transformations (Example)

A Rotation Example:

- Coordinate frames are usually attached to objects, suppose we want to orient left rectangle such that it aligns with the right rectangle

- E.g. find transformation T such that
- $T(e 1)=f 1, T(e 2)=f 2$

- Solve a linear system, based on elementary trigonometry
- $M^{*} e 1=f 1, M^{*} e 2=f 2$
$F_{1}^{e}=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right], \quad F_{2}^{e}=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$
$M^{e}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

2.1 Specific Linear Transformations

- Several most common linear 2D transformations
\square Scaling
- Rotation
\square Shear
- Reflection -- scaling with negative factors
- Orthographic projection

2.1.1 Scaling

- 2D Transformation matrix: $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$
- Scaling a vector: $\left.\begin{array}{ccc}a & 0 & x \\ 0 & b & x\end{array}\right]=\left[\begin{array}{ll}a x \\ b y\end{array}\right]$
- Scaling factors: a and b, along x and y axes
- If $a=b \rightarrow$ uniform (isotropic) scaling shape preserved, only size changed
- If $a=b=1 \rightarrow$ identity transform
- Directly extendible to 3D

2.1.2 Rotation and Shear

- Rotation in 2D:

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- Shear: let one of the off-diagonal elements of the scaling transformation matrix be non-zero

$$
\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+a y \\
y
\end{array}\right]
$$

2.1.3 Reflection and Orthographic Projection

- Reflection = scaling with negative factors

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-x \\
y
\end{array}\right]
$$

- Orthographic Projection

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
0
\end{array}\right]
$$

- Does not map a basis onto another basis
- Singular transformation (can't be inverted, lost all depth information along a direction)

2.2 Translation

- simply

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
\delta_{1} \\
\delta_{2}
\end{array}\right]=\left[\begin{array}{l}
x+\delta_{1} \\
y+\delta_{2}
\end{array}\right]
$$

- Not a linear transformation (can't be computed by 2*2 matrix multiplication)
- Affine Transformations
= translations + non-degenerate linear transformations
\square Rigid Transformations = translations + rotations
\square If a transformation preserves distance \rightarrow called isometries

2.3 Rotation/Scaling Center

- They are about the origin
- Rotation: the whole space rotates
- Scaling: the object will be farther or closer to the origin depending

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
s_{x} x \\
s_{y} y
\end{array}\right]}
\end{aligned}
$$ on the scales

- To transform around the shape center, or an any given point p: (3-step Composition)

1) Translate p to the origin
2) Conduct the transformation
3) Translate the object back

2.4 Homogeneous Coordinates

- Translations and linear transformations can be treated more uniformly if we introduce a different system of coordinates: homogeneous coordinates.
- Use the 2D example in the following, but can be generalized to n-D straightforwardly.

1. introduce an additional component and associate with the vector x the column matrix:

$$
X^{*}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
X \\
1
\end{array}\right]
$$

$$
X^{\star} \rightarrow \text { homogeneous coordinates }
$$

2.4 Homogeneous Coordinates (cont.)

2. Also add a third row and column to the linear transformation matrix

$$
M^{*}=\left[\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { i.e. } \quad M^{*}=\left[\begin{array}{ll}
M & 0 \\
0 & 1
\end{array}\right]
$$

3. Multiply this augmented matrices, and get:

$$
M^{*} X^{*}=\left[\begin{array}{cc}
M & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
1
\end{array}\right]=\left[\begin{array}{c}
M X \\
1
\end{array}\right]=\left[\begin{array}{l}
Y \\
1
\end{array}\right]=Y^{*}
$$

Nothing changed so far.

- When elements of the third column become non-zero:
e.g.

$$
M^{*}=\left[\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]
$$

- We get:

$$
Y^{*}=M^{*} X^{*}=\left[\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+a \\
y+b \\
1
\end{array}\right]
$$

2.4 Homogeneous Coordinates (cont.)

- Now we have uniform treatment of translation and rotation
- only one procedure needed to process both
- one matrix-multiplication hardware works for both
- Also deal with projections (for displaying 3D objects, later)

2.4 Homogeneous Coordinates (cont.) -- Geometric Interpretation

(1) generalize the coordinates of an Euclidean point p:

$$
P^{*}=\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]
$$

\square Increase the dimension of the original space by 1
\square The original standard Euclidean plane is at $w=1$

2.4 Homogeneous Coordinates (cont.)

-- Geometric Interpretation

(2) Connect p with the origin (get line L)
\square Each p corresponds to one line L, any point on L differ with p by a scaling
\square We can always normalize the coordinate to $\left[\begin{array}{c}x / w \\ y / w \\ 1\end{array}\right]$

2.4 Homogeneous Coordinates (cont.)

-- Geometric Interpretation

- The set of all lines through the origin of our auxiliary 3D space is called the projective plane.
\square The elements of the projective plane are called projective points. (note they are actually lines)
\square Each Euclidean point p has a corresponding line L and projective point p^{*}
- Therefore, we can manipulate Euclidean points through operations on their projective counterparts.
(see the diagram on the right:
an affine transform T

= Imbed + projective transform + normalize)

Composition of Transformations

With homogeneous coordinates, affine transformations and their composition can be represented by matrices and their product

Examples:

$$
\left[\begin{array}{ccc}
1 & & d_{x 2} \\
& 1 & d_{y 2} \\
& & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & & d_{x 1} \\
& 1 & d_{y 1} \\
& & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & & d_{x 1}+d_{x 2} \\
& 1 & d_{y 1}+d_{y 2} \\
& & 1
\end{array}\right] \quad\left[\begin{array}{lll}
s_{x 2} & & \\
& s_{y 2} & \\
& & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
s_{x 1} & & \\
& s_{y 2} & \\
& & 1
\end{array}\right]=\left[\begin{array}{lll}
s_{x 1} \cdot s_{x 2} & & \\
& s_{y 1} \cdot s_{y 2} & \\
& & 1
\end{array}\right]
$$

- Rigid Transformation
$\square \leftarrow$ product of an arbitrary sequence of rotation and translation matrices
\square preserving length, angles
- Affine transformation
$\square \leqslant$ product of an arbitrary sequence of rotation, translation, scale, and shear matrices
- preserving parallelism

Composition of Transformations (cont.)

\square Combine fundamental R, S, and T matrices \rightarrow produce desired general affine transformation
\square Gain efficiency by applying a single composed transformation, rather than a series of transformations

Examples: Rotating a house about a point P_{1} by an angle

$$
\begin{aligned}
& \text { Original house } \\
& \text { After translation } \\
& \text { of } P_{1} \text { to origin } \\
& \text { After rotation } \\
& T\left(x_{1}, y_{1}\right) \cdot R(\theta) \cdot T\left(-x_{1},-y_{1}\right)=\left[\begin{array}{ccc}
1 & 0 & x_{1} \\
0 & 1 & y_{1} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & -x_{1} \\
0 & 1 & -y_{1} \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & x_{1}(1-\cos \theta)+y_{1} \sin \theta \\
\sin \theta & \cos \theta & y_{1}(1-\cos \theta)-x_{1} \sin \theta \\
0 & 0 & 1
\end{array}\right] \text {. }
\end{aligned}
$$

2D Window-To-Viewport Transformation

- We get objects (2D) represented in world-coordinate system
\square We need to map them onto screen coordinates
- A common question:
\square Given a rectangular region in world coordinates (world-coordinate window)
\square A corresponding rectangular region in screen coordinates (viewport)
- To find the transformation

Sometimes, we want shape-preserving: make $\mathrm{s}_{\mathrm{u}}=\mathrm{s}_{\mathrm{v}}$

