Half-Edge Structure

for Triangle Meshes

Xin (Shane) Li (xinli@|su_.edu)

Course Email: ee4700fall2009@gmail .com

Lectures: Tu Th 12:10pm - 1:30pm
2150 Patrick Taylor Hall

Office Hours: Tu Th 9:30am - 11:00am
313 Electrical Engineering Building
Louisiana State University

\{ http://www.ece.lsu.edu/xinli/teaching/EE4700Fall2009.htm I

Last class

e What is Computer Graphics?
e Various applications of computer graphics techniques
. movies, games, scientific research, engineering
design, virtual reality...
» CG pipeline:
Data acquisition > modeling/processing > output/rendering

» Shape representation methods overview (part)

Polygonal meshes
CSG method
Implicit representation

Today

e QOutline

» Shape representation methods overview (cont.)
Spatial partitioning method > quad-tree (2D), oct-tree (3D)

<will revisit it when we do animation and collision detection
Spline representation (in a few weeks)
Skeleton representation

< will revisit it when we do shape comparison, animation,...
Generalized cylinders representation

 Focus on Half-Edge Data Structure
Half-edge data structure

Triangle mesh as a general representation scheme before you
can program everything

Quadtree Rep.

* A hierarchical structure based on divide-and-conquer
subdivision for 2D shapes
e A quadtree - hierarchically represent a shape in the plane

e Each cell may be full, partially full, or empty (depending on how
much of The)::ell in‘rer'lsoec’rs TKe shape) PTY AeP ’

A partially full cell is recursively subdivided into sub-cells

 Continue the subdivision until
all quadrants are homogeneous (either full or empty), or
a predetermined cutoff depth is reached

~

i’ L AN

| ‘al | s
ol

J. Warnock, “A Hidden-Surface Algorithm for Computer Generated
Half-Tone Pictures”, Technical Report, Univ. of Utah, 1969.

Octree Rep. |

 Similar to the quadtree, but in 3D { 6{7 333 .
e Each cell > 8 children 5711/

* Much research on efficiently storing and SR
processing quadtrees and octrees L s s
* e.g. Boolean operations; Neighbor finding...

Only horizontal/vertical cutting?
 one variant methods
—>Binary space-partitioning tree

divide the space into pairs of subspaces
by an arbitrary plane

A 2D BSP tree

4 N
Skeleton Rep.

O Skeleton - a thin 1D representation of 2D/3D Objects
[Skeleton Rep. of a Shape = a (hierarchical) set of bones + attached skins

Q Widely used in animation, matching, object recognition...

- p
Generalized Cylinder Rep.

i
||G'ﬁ"'|'|'|\| f
i

|I||

ikt
1)

0 A representation good for modeling
articulated objects

O A shape = {axis, a cross-section curve, a
scaling function}

» Good for symmetric
shapes with few local
details and with clear
skeletal structure

> Widely used in vision
community for shape
recognition, and shape
recover

GC axis generation

|

Cross-Sections
Generation

Half-Edge Data Structure

° A commonh way to represent triangular mesh for
geomeftric processing

e we focus on triangle-mesh here (it works for general polygonal
mesh).

3D analogy: half-face data structure for tetrahedral mesh
o Effective for maintaining incidence information of
vertices
 Efficient local traversal
e Low spatial cost

e Supporting dynamic local updates/manipulations (edge collapse,
vertex split, etc.)

4 N

Questions of mesh rep.?

e Remember when we store a triangle mesh by
A vertex table (geometry) + A facet table (connectivity)
e Enough to preserve all the information, but how will you use this

representation to solve the following questions and how efficient your
algorithm can be?

*Whether a given vertex is on the boundary?
*What are the 1-ring neighboring vertices of a vertex?
"How to traverse from one vertex to another vertex?

We need to answer these questions when we manipulate meshes

(e.g. computing surface normal, detecting how curved a region is...)

 But very difficult by just looking at
those two tables

* Need a more efficient representation

. /

Half-Edge Data Structure

Looking at a triangle mesh:
2 vertices share an edge, 2 faces share an edge
Oeach face has 3 vertices and 3 edges...
»We can store all incidence information and build a big network
HBut a vertex can have many neighboring vertices, edges, and faces
»Storing "half-edges” is simply enough
HdEach edge has 2 half-edges (the boundary edge only has 1)

N
Half-Edge Data Structure (cont.)

dFor each edge:
it has 2 half-edges (the boundary edge has 1)

dthey are called twins to each other ?/O
dFor each half-edge: \

dbounds 1 face and 1 edge - a face pointer, an edge
pointer, respectively

has one origin, and one target vertex - a vertex
pointer (for the target) - __ g mlfEg
> To be able to walk around a face: A =
Qit has a pointer to the next half-edge
Calso a pointer to the previous half-edge

HdFor each face:
dTo simply access all its incident elements - Only need
a pointer to any half-edge

HdFor each vertex
A pointer to an arbitrary half-edge that has it as the
target
HdRecord its 3D coordinates (its geometric location)

Loop

Note the directions of
those half—edges

bounding a face.

Half-Edge Data Structure (example)

- Containers to store primitives:

The Vertex Container vl ... v6
%e—He-l-PE-el-ge—Geﬁte-iﬁel—
lh&Edg@Gen-ta-iﬂer—

The Face Container f1[v1,v2,v3] ... {5[v4,v3,v6]

Remember the Half-Edge direction: [v1, v2] or [v2,
vl] around each face?

Should be consistent:
e.g. CCW in our configuration (right hand rule)

Note: the container could be array, list, binary
search tree...
(it depends, but usually List is good enoughl)

Half-Edge Data Structure (example)

- Containers to store primitives:

The Vertex Container” vl ... v6

The Hall EdseContainer—

The Edge Container [v1,v3], [v1,v2], [v2,v3], [vl,v4], [v3,v4], ...
The Face Container f1[v1,v2,v3] ... {5[v4,v3,v6]

- Relationship between primitives:

e) g)

A

\ 4

[Half—Edge < 7 Vertex]

Using Half-Edge Data Structure

Examples:

1. How to check whether a vertex/edge/face is on the boundary?
v Simply check whether an edge has one half-edge
2. How to find the one-ring neighboring vertices of a vertex v?
v’ Get any half-edge targeting v, iteratively get “next()”, then “twin()”
3. How to fravel along the boundary?
v' ..get a boundary vertex and its most CLW outwards halfedge,
iteratively do next(), twin(), next()...
4. Some other operations such as subdivision/simplification...?

e) g)

A

\ 4

[Half—Edge Vertex]

a I
Resources for

"Half-Edge” Data Structure

To get better understanding about it, you can
1) Download and read codes from:

2) Google Half-edge data structure for tutorials
3) In Computational Geometry, it is well known as "doubly-connected edge
list" structure (extendible to general polygonal mesh)

Comp. Geom. book: “Computational Geometry Algorithms and Applications”, by M. de
Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Springer-Verlag.

Hint for 1):

O Go through the "read()" method in the class [Face] Edge]
"Mesh", see how we build up half-edge 3
structure from the vertex table + face
table |}

O Go through “iterators.h”, see what iterator [Half-Edge Vertex]

you can use to help you traverse around

_ /

-
Some other issues

Next class:

How to write a simple OpenGL program to render a triangle mesh?
(take your fime fo read half-edge data structure, not using it here yet)

On the other hand, if you hate data structure and programming...

for people don't use OpenGL, but work on 3D shapes and meshes:

0 Store meshes with 2 tables, use some viewers/programs written by others as a black
box to visualize even edit the model, only manipulate, compute over, and analyze the
“m" file...

O Before we can design a fully robust/powerful GUI and visualization system (which we
may keep doing through the semester), here are something for us to firstly play a
little bit with triangle meshes and 3D shapes:

O Some mesh data (.m format) can be downloaded at:

O A small viewer "G3dOGL.exe" (for .m format mesh) can be downloaded at:
0 Many 3D triangle mesh models online (but in different format):

Q Stanford 3D Scanning Repository:
d Aim@Shape Repository

> Part of hw 1: convert meshes with other formats to ".m" format, (will be
& explained later), so that they are compatible to our language...

