
Collision Detection

2/59

What is Collision Detection?
 Given two geometric objects, determine if

they overlap.
 Typically, at least one of the objects is a

set of triangles.
Rays/lines
 Planes
 Polygons
Frustums
Spheres
Curved surfaces

3/59

When is it useful?
 Often in simulations

Objects moving/deforming – find when
they hit something else, (then react)

 Other examples
Ray tracing speedup
Culling objects in regions

 Usually, needs to be fast
Applied to lots of objects, often in real-

time applications

4/59

Bounding Volumes
 Key idea:

 Surround the object with a (simpler) bounding
object (the bounding volume).

 If something does not collide with the bounding
volume, it does not collide with the object inside.

 Often, to intersect two

objects, first intersect their

bounding volumes

5/59

Choosing a Bounding Volume
 Lots of choices, each with tradeoffs

6/59

Choosing a Bounding Volume
 Lots of choices, each with tradeoffs

 Tighter fitting is better
 More likely to eliminate “false” intersections

7/59

Choosing a Bounding Volume
 Lots of choices, each with tradeoffs

 Tighter fitting is better

 Simpler shape is better
 Makes it faster to compute with

8/59

Choosing a Bounding Volume
 Lots of choices, each with tradeoffs

 Tighter fitting is better

 Simpler shape is better

 Convex is usually better
 Gives simpler shape, easier computation

9/59

Common Bounding Volumes: Sphere

 Rotationally invariant
 Usually fast to compute with
 Store: center point and

radius
Center point: object’s

center of mass
Radius: distance of

farthest point on object
from center of mass.

 Often not very tight fit

10/59

Common Bounding Volumes:
Axis Aligned Bounding Box (AABB)

 Very fast to compute with
 Store: max and min along x,y,z

axes.
 Look at all points and record

max, min
 Moderately tight fit
 Must update after rotation

 Unless: using a loose box that
encompasses the bounding sphere
 invariance to the object’s global
rotation

11/59

Common Bounding Volumes: k-dops

 k-Discrete Oriented Polytopes
 Same idea as AABBs, but use

more axes.
 Store: max and min along fixed

set of axes.
 Need to project points onto

other axes.

 Tighter fit than AABB, but
also a bit more work.

12/59

Choosing axes for k-dops
 Common axes: consider axes

coming out from center of a
bounding cube:

 Through faces: 6-dop
 same as AABB

 Faces and vertices: 14-dop
 Faces and edge centers: 18-dop
 Faces, vertices, and edge centers;

26-dop
 More than that not really helpful
 Empirical results show 14 or 18-

dop performs best.

13/59

Common Bounding Volumes:
Oriented Bounding Box (OBB)

 Store rectangular parallelepiped
oriented to best fit the object

 Store:
 Center
 Orthonormal set of axes
 Extent along each axis

 Tight fit, but takes work to get good
initial fit

 OBB rotates with object, therefore
only rotation of axes is needed for
update

 Computation is slightly slower than
for AABBs

14/59

Common Bounding Volumes:
Convex Hull (CH)

 Very tight fit (tightest convex
bounding volume)

 Slow to compute with
 Store: set of polygons forming

convex hull
 Can rotate CH along with

object.
 Can be efficient for some

applications

15/59

Testing for Collision
 Will depend on type of objects and bounding

volumes.

 Specialized algorithms for each:
 Sphere/sphere
 AABB/AABB

 OBB/OBB

 Ray/sphere

 Triangle/Triangle

16/59

Collision Test Example
Sphere-Sphere
 Find distance between centers of spheres

 Compare to sum of sphere radii
 If distance is less, they collide

 For efficiency, check squared distance vs.
square of sum of radii

d
r2

r1

17/59

Collision Test Example
AABB vs. AABB
 Project AABBs onto axes

 i.e. look at extents

 If overlapping on all axes, the boxes overlap.

 Same idea

for k-dops.

18/59

Collision Test Example
OBB vs. OBB
 Similar to overlap test for k-dops

 How do we find axes to test for overlap?

19/59

Separating Axis Theorem
 Two convex shapes do not overlap if and only if

there exists an axis such that the projections
of the two shapes do not overlap

20/59

Enumerating Separating Axes
 2D: check axis aligned with normal of each

face

 3D: check axis aligned with normals of each
face and cross product of each pair of edges

21/59

Enumerating Separating Axes
 2D: check axis aligned with normal of each

face

 3D: check axis aligned with normals of each
face and cross product of each pair of edges

22/59

Enumerating Separating Axes
 2D: check axis aligned with normal of each

face

 3D: check axis aligned with normals of each
face and cross product of each pair of edges

23/59

Enumerating Separating Axes
 2D: check axis aligned with normal of each

face

 3D: check axis aligned with normals of each
face and cross product of each pair of edges

24/59

Enumerating Separating Axes
 2D: check axis aligned with normal of each

face

 3D: check axis aligned with normals of each
face and cross product of each pair of edges

25/59

Collision Test Example
Triangle-Triangle
 Mesh collision detection tests eventually

reduce to this.

 Two common approaches. Both involve finding
the plane a triangle lies in.
 Cross product of edges to get triangle normal.
 This is the plane normal [A B C] where plane is

Ax+By+Cz+D=0

 Solve for D by plugging in a triangle vertex

26/59

Triangle-Triangle Collision 1
 Find line of intersection between triangle

planes.

 Find extents of triangles along this line

 If extents overlap, triangles intersect.

27/59

Triangle-Triangle Collision 2
 Intersect edges of one triangle with plane of

the other triangle.

 2 edges will intersect – form line segment in
plane.

 Test that 2D line segment against triangle.

28/59

Bounding Volume Hierarchies
 What happens when the bounding volumes do

intersect?
 We must test whether the actual objects

underneath intersect.

 For an object made from lots of polygons, this is
complicated.

 So, we will use a bounding volume hierarchy

29/59

Bounding Volume Hierarchies
 Highest level of hierarchy – single BV around

whole object

 Next level – subdivide the object into sub-
parts.
 Each part gets its own BV

 Continue recursively until only one triangle
remains

30/59

Bounding Volume Hierarchy
Example

31/59

Bounding Volume Hierarchy
Example

32/59

Bounding Volume Hierarchy
Example

33/59

Bounding Volume Hierarchy
Example

34/59

Bounding Volume Hierarchy
Example

35/59

Bounding Volume Hierarchy
Example

36/59

Bounding Volume Hierarchy
Example

37/59

Bounding Volume Hierarchy
Example

38/59

Bounding Volume Hierarchy
Example

39/59

Bounding Volume Hierarchy
Example

40/59

Bounding Volume Hierarchy
Example

41/59

Bounding Volume Hierarchy
Example

42/59

Intersecting Bounding Volume
Hierarcies
 For object-object collision detection
 Keep a queue of potentially intersecting

BVs
 Initialize with main BV for each object

 Repeatedly pull next potential pair off
queue and test for intersection.
 If that pair intersects, put pairs of

children into queue.
 If no child for both BVs, test triangles

inside
 Stop when we either run out of pairs (thus

no intersection) or we find an intersecting
pair of triangles

43/59

BVH Collision Test example

44/59

BVH Collision Test example

45/59

BVH Collision Test example

46/59

BVH Collision Test example

47/59

BVH Collision Test example

48/59

BVH Collision Test example

49/59

BVH Collision Test example

50/59

BVH Collision Test example

51/59

BVH Collision Test example

52/59

BVH Collision Test example

53/59

BVH Collision Test example

54/59

BVH Collision Test example

55/59

Broad Phase vs. Narrow Phase
 What we have talked about so far is the

“narrow phase” of collision detection.
 Testing whether two particular objects collide

 The “broad phase” assumes we have a number
of objects, and we want to find out all pairs
that collide.

 Testing every pair is inefficient

56/59

Broad Phase Collision Detection
 Form an AABB for each object
 Pick an axis

 Sort objects along that axis
 Find overlapping pairs along that axis
 For overlapping pairs, check along other axes.

 Limits the number of object/object tests
 Overlapping pairs then sent to narrow phase

 Or
 Consider constructing an octree for all these

models

