Collision Detection




What is Collision Detection?

* Given two geometric objects, determine if
’rhey overlap.

flcally at least one of the objects isa
of triangles.

 Rays/ Imes

o Planes

* Polygons

e Frustums

» Spheres

e Curved surfaces




When is it useful?

e Often in simulations
* Objects moving/deforming - find when
they hit something else, (then react)
* Other examples
* Ray tracing speedup
e Culling objects in regions
* Usually, needs to be fast

* Applied to lots of objects, often in real-
time applications

@




Bounding Volumes

» Key idea:
e Surround the object with a (simpler) bounding
object (the bounding volume).

* If something does not collide with the bounding
volume, it does not collide with the object inside.

o Often, to intersect two

objects, first intersect their
bounding volumes /




Choosing a Bounding Volume

e Lots of choices, each with tradeoffs




Choosing a Bounding Volume

e Lots of choices, each with tradeoffs

 Tighter fitting is better
e More likely to eliminate "false"” intersections




Choosing a Bounding Volume

e Lots of choices, each with tradeoffs
 Tighter fitting is better

» Simpler shape is better
e Makes it faster to compute with

»

=




Choosing a Bounding Volume

e Lots of choices, each with tradeoffs
 Tighter fitting is better
» Simpler shape is better

» Convex is usually better
e Gives simpler shape, easier computation

=




Common Bounding Volumes: Sphere

* Rotationally invariant
 Usually fast to compute with

» Store: center point and
radius
 Center point: object’s
center of mass
* Radius: distance of
farthest point on object
from center of mass.

» Often not very tight fit

@ y




4 :
Common Bounding Volumes:

Axis Aligned Bounding Box (AABB)

» Very fast to compute with

» Store: max and min along x.,y,z
axes.

* Look at all points and record
max, min

* Moderately tight fit

* Must update after rotation

e Unless: using a loose box that
encompasses the bounding sphere
- invariance to the object's global
rotation

@




Common Bounding Volumes: k-dops

* k-Discrete Oriented Polytopes

e Same idea as AABBs, but use
more axes.

e Store: max and min along fixed
set of axes.

* Need to project points onto
other axes.

» Tighter fit than AABB, but
also a bit more work.

@




Choosing axes for k-dops

e Common axes: consider axes
coming out from center of a T
bounding cube: / .

* Through faces: 6-dop
e same as AABB S

e Faces and : 14-dop —] ~

» Faces and edge centers: 18-dop // ~

e Faces, , and edge centers; /
26-dop

e More than that not really helpful

e Empirical results show 14 or 18-
dop performs best.

@




e

@

Common Bounding Volumes:
Oriented Bounding Box (OBB)

Store rectangular parallelepiped
oriented to best fit the object

Store.

e Center

e Orthonormal set of axes

e Extent along each axis

Tight fit, but takes work to get good
initial fit

OBB rotates with object, therefore

only rotation of axes is heeded for
update

Computation is slightly slower than
for AABBs




4 :
Common Bounding Volumes:

Convex Hull (CH)

» Very tight fit (tightest convex
bounding volume)

 Slow to compute with

» Store: set of polygons forming
convex hull

 Can rotate CH along with
object.

e Can be efficient for some
applications

@




Testing for Collision

» Will depend on type of objects and bounding
volumes.

» Specialized algorithms for each:
e Sphere/sphere
« AABB/AABB
« OBB/OBB
 Ray/sphere
 Triangle/Triangle




Collision Test Example
Sphere-Sphere

 Find distance between centers of spheres

e Compare to sum of sphere radii
 If distance is less, they collide

* For efficiency, check squared distance vs.
square of sum of radii




Collision Test Example
AABB vs. AABB

* Project AABBs onto axes
e i.e. look at extents

 If overlapping on all axes, the boxes overlap.

e Same idea

for k-dops.




Collision Test Example
OBB vs. OBB

» Similar to overlap test for k-dops
» How do we find axes to test for overlap?




@

Separating Axis Theorem

» Two convex shapes do not overlap if and only if
there exists an axis such that the projections
of the two shapes do not overlap

N
-




Enumerating Separating Axes

 2D: check axis aligned with normal of each
face

 3D: check axis aligned with normals of each
face and cross product of each pair of edges




Enumerating Separating Axes

 2D: check axis aligned with normal of each
face

» 3D: check axis aligned with normals of each
face and cross product of each pair of edges




Enumerating Separating Axes

 2D: check axis aligned with normal of each
face

» 3D: check axis aligned with normals of each
face and cross product of each pair of edges




Enumerating Separating Axes

 2D: check axis aligned with normal of each
face

» 3D: check axis aligned with normals of each
face and cross product of each pair of edges

-,




[

Enumerating Separating Axes

 2D: check axis aligned with normal of each
face

» 3D: check axis aligned with normals of each
face and cross product of each pair of edges

-

N




Collision Test Example
Triangle-Triangle

» Mesh collision detection tests eventually
reduce to this.

» Two common approaches. Both involve finding
the plane a triangle lies in.
e Cross product of edges to get triangle normal.

 This is the plane normal [A B C] where plane is
Ax+By+Cz+D=0

e Solve for D by plugging in a triangle vertex




Triangle-Triangle Collision 1

* Find line of intersection between triangle
planes.

 Find extents of triangles along this line
o If extents overlap, triangles intersect.

el

\




Triangle-Triangle Collision 2

» Intersect edges of one triangle with plane of
the other triangle.

2 edges will intersect - form line segment in
plane.

o Test that 2D line segment against triangle.

e




Bounding Volume Hierarchies

* What happens when the bounding volumes do
Intersect?

* We must test whether the actual objects
underneath intersect.

 For an object made from lots of polygons, this is
complicated.

e So, we will use a bounding volume hierarchy




Bounding Volume Hierarchies

 Highest level of hierarchy - single BV around
whole object

* Next level - subdivide the object into sub-
parts.
e Each part gets its own BV

 Continue recursively until only one triangle
remains




e

Bounding Volume Hierarchy
Example




. Bounding Volume Hierarchy

Example
5




5 Bounding Volume Hierarchy

Example
{




e

Bounding Volume Hierarchy

Example




5 Bounding Volume Hierarchy

Example

(




5 Bounding Volume Hierarchy

Example




e

Bounding Volume Hierarchy
Example




e

Bounding Volume Hierarchy
Example




5 Bounding Volume Hierarchy

Example

W)




e

Bounding Volume Hierarchy
Example




e

Bounding Volume Hierarchy
Example




e

Bounding Volume Hierarchy
Example




@

Intersecting Bounding Volume

Hierarcies

* For object-object collision detection
o Ié\e/ep a queue of potentially intersecting
S

e Tnitialize with main BV for each object

» Repeatedly pull next potential pair of f
queue and test for intersection.

o If that pair intersects, put pairs of
children into queue.

 If no child for both BVs, test triangles
inside

» Stop when we either run out of pairs (thus
no_ intersection) or we find an intersecting
pair of triangles




BVH Collision Test example




BVH Collision Test example




BVH Collision Test example




BVH Collision Test example




BVH Collision Test example




BVH Collision Test example

E(RsT,
JISHN




BVH Collision Test example
KRSt




BVH Collision Test example

S (L
IS




BVH Collision Test example

Ky

N

=




BVH Collision Test example

iy
IS




BVH Collision Test example

Gl
IS




BVH Collision Test example

s
IS




Broad Phase vs. Narrow Phase

* What we have talked about so far is the
"narrow phase” of collision detection.

e Testing whether two particular objects collide

* The "broad phase"” assumes we have a number
of objects, and we want to find out all pairs
that collide.

» Testing every pair is inefficient




@

Broad Phase Collision Detection

e Form an AABB for each object

* Pick an axis

» Sort objects along that axis

 Find overlapping pairs along that axis

 For overlapping pairs, check along other axes.
e Limits the number of object/object tests

» Overlapping pairs then sent to narrow phase

e Or
e Consider constructing an octree for all these
models




