
Collision Detection

2/59

What is Collision Detection?
 Given two geometric objects, determine if

they overlap.
 Typically, at least one of the objects is a

set of triangles.
Rays/lines
 Planes
 Polygons
Frustums
Spheres
Curved surfaces

3/59

When is it useful?
 Often in simulations

Objects moving/deforming – find when
they hit something else, (then react)

 Other examples
Ray tracing speedup
Culling objects in regions

 Usually, needs to be fast
Applied to lots of objects, often in real-

time applications

4/59

Bounding Volumes
 Key idea:

 Surround the object with a (simpler) bounding
object (the bounding volume).

 If something does not collide with the bounding
volume, it does not collide with the object inside.

 Often, to intersect two

objects, first intersect their

bounding volumes

5/59

Choosing a Bounding Volume
 Lots of choices, each with tradeoffs

6/59

Choosing a Bounding Volume
 Lots of choices, each with tradeoffs

 Tighter fitting is better
 More likely to eliminate “false” intersections

7/59

Choosing a Bounding Volume
 Lots of choices, each with tradeoffs

 Tighter fitting is better

 Simpler shape is better
 Makes it faster to compute with

8/59

Choosing a Bounding Volume
 Lots of choices, each with tradeoffs

 Tighter fitting is better

 Simpler shape is better

 Convex is usually better
 Gives simpler shape, easier computation

9/59

Common Bounding Volumes: Sphere

 Rotationally invariant
 Usually fast to compute with
 Store: center point and

radius
Center point: object’s

center of mass
Radius: distance of

farthest point on object
from center of mass.

 Often not very tight fit

10/59

Common Bounding Volumes:
Axis Aligned Bounding Box (AABB)

 Very fast to compute with
 Store: max and min along x,y,z

axes.
 Look at all points and record

max, min
 Moderately tight fit
 Must update after rotation

 Unless: using a loose box that
encompasses the bounding sphere
 invariance to the object’s global
rotation

11/59

Common Bounding Volumes: k-dops

 k-Discrete Oriented Polytopes
 Same idea as AABBs, but use

more axes.
 Store: max and min along fixed

set of axes.
 Need to project points onto

other axes.

 Tighter fit than AABB, but
also a bit more work.

12/59

Choosing axes for k-dops
 Common axes: consider axes

coming out from center of a
bounding cube:

 Through faces: 6-dop
 same as AABB

 Faces and vertices: 14-dop
 Faces and edge centers: 18-dop
 Faces, vertices, and edge centers;

26-dop
 More than that not really helpful
 Empirical results show 14 or 18-

dop performs best.

13/59

Common Bounding Volumes:
Oriented Bounding Box (OBB)

 Store rectangular parallelepiped
oriented to best fit the object

 Store:
 Center
 Orthonormal set of axes
 Extent along each axis

 Tight fit, but takes work to get good
initial fit

 OBB rotates with object, therefore
only rotation of axes is needed for
update

 Computation is slightly slower than
for AABBs

14/59

Common Bounding Volumes:
Convex Hull (CH)

 Very tight fit (tightest convex
bounding volume)

 Slow to compute with
 Store: set of polygons forming

convex hull
 Can rotate CH along with

object.
 Can be efficient for some

applications

15/59

Testing for Collision
 Will depend on type of objects and bounding

volumes.

 Specialized algorithms for each:
 Sphere/sphere
 AABB/AABB

 OBB/OBB

 Ray/sphere

 Triangle/Triangle

16/59

Collision Test Example
Sphere-Sphere
 Find distance between centers of spheres

 Compare to sum of sphere radii
 If distance is less, they collide

 For efficiency, check squared distance vs.
square of sum of radii

d
r2

r1

17/59

Collision Test Example
AABB vs. AABB
 Project AABBs onto axes

 i.e. look at extents

 If overlapping on all axes, the boxes overlap.

 Same idea

for k-dops.

18/59

Collision Test Example
OBB vs. OBB
 Similar to overlap test for k-dops

 How do we find axes to test for overlap?

19/59

Separating Axis Theorem
 Two convex shapes do not overlap if and only if

there exists an axis such that the projections
of the two shapes do not overlap

20/59

Enumerating Separating Axes
 2D: check axis aligned with normal of each

face

 3D: check axis aligned with normals of each
face and cross product of each pair of edges

21/59

Enumerating Separating Axes
 2D: check axis aligned with normal of each

face

 3D: check axis aligned with normals of each
face and cross product of each pair of edges

22/59

Enumerating Separating Axes
 2D: check axis aligned with normal of each

face

 3D: check axis aligned with normals of each
face and cross product of each pair of edges

23/59

Enumerating Separating Axes
 2D: check axis aligned with normal of each

face

 3D: check axis aligned with normals of each
face and cross product of each pair of edges

24/59

Enumerating Separating Axes
 2D: check axis aligned with normal of each

face

 3D: check axis aligned with normals of each
face and cross product of each pair of edges

25/59

Collision Test Example
Triangle-Triangle
 Mesh collision detection tests eventually

reduce to this.

 Two common approaches. Both involve finding
the plane a triangle lies in.
 Cross product of edges to get triangle normal.
 This is the plane normal [A B C] where plane is

Ax+By+Cz+D=0

 Solve for D by plugging in a triangle vertex

26/59

Triangle-Triangle Collision 1
 Find line of intersection between triangle

planes.

 Find extents of triangles along this line

 If extents overlap, triangles intersect.

27/59

Triangle-Triangle Collision 2
 Intersect edges of one triangle with plane of

the other triangle.

 2 edges will intersect – form line segment in
plane.

 Test that 2D line segment against triangle.

28/59

Bounding Volume Hierarchies
 What happens when the bounding volumes do

intersect?
 We must test whether the actual objects

underneath intersect.

 For an object made from lots of polygons, this is
complicated.

 So, we will use a bounding volume hierarchy

29/59

Bounding Volume Hierarchies
 Highest level of hierarchy – single BV around

whole object

 Next level – subdivide the object into sub-
parts.
 Each part gets its own BV

 Continue recursively until only one triangle
remains

30/59

Bounding Volume Hierarchy
Example

31/59

Bounding Volume Hierarchy
Example

32/59

Bounding Volume Hierarchy
Example

33/59

Bounding Volume Hierarchy
Example

34/59

Bounding Volume Hierarchy
Example

35/59

Bounding Volume Hierarchy
Example

36/59

Bounding Volume Hierarchy
Example

37/59

Bounding Volume Hierarchy
Example

38/59

Bounding Volume Hierarchy
Example

39/59

Bounding Volume Hierarchy
Example

40/59

Bounding Volume Hierarchy
Example

41/59

Bounding Volume Hierarchy
Example

42/59

Intersecting Bounding Volume
Hierarcies
 For object-object collision detection
 Keep a queue of potentially intersecting

BVs
 Initialize with main BV for each object

 Repeatedly pull next potential pair off
queue and test for intersection.
 If that pair intersects, put pairs of

children into queue.
 If no child for both BVs, test triangles

inside
 Stop when we either run out of pairs (thus

no intersection) or we find an intersecting
pair of triangles

43/59

BVH Collision Test example

44/59

BVH Collision Test example

45/59

BVH Collision Test example

46/59

BVH Collision Test example

47/59

BVH Collision Test example

48/59

BVH Collision Test example

49/59

BVH Collision Test example

50/59

BVH Collision Test example

51/59

BVH Collision Test example

52/59

BVH Collision Test example

53/59

BVH Collision Test example

54/59

BVH Collision Test example

55/59

Broad Phase vs. Narrow Phase
 What we have talked about so far is the

“narrow phase” of collision detection.
 Testing whether two particular objects collide

 The “broad phase” assumes we have a number
of objects, and we want to find out all pairs
that collide.

 Testing every pair is inefficient

56/59

Broad Phase Collision Detection
 Form an AABB for each object
 Pick an axis

 Sort objects along that axis
 Find overlapping pairs along that axis
 For overlapping pairs, check along other axes.

 Limits the number of object/object tests
 Overlapping pairs then sent to narrow phase

 Or
 Consider constructing an octree for all these

models

