Progressive Meshes

Xin (Shane) Li

Progressive Meshes

- Motivations
- For Surfaces: Progressive Triangular Meshes
 - Connectivity
 - Geometry
- For Solids: Progressive Tetrahedral Meshes

Complex Meshes

<u>Challenges:</u> - Expensive to store, transmit, render, and edit

Level of Detail

- Decreasing the complexity of a 3D object representation
 - as it moves away from the viewer
 - or based on other metrics (object importance, eyespace position...)
- Applied on geometry, texture, material...

69,451 faces

2,502 faces

251 polys

76 polys

Level of Detail

• Distant objects use coarser LODs:

Multiresolutional Modeling, Processing and Analysis

- Subdivision Surface, splines, wavelets...
- Image pyramid...
- Quad/oct tree, BSP tree...

Motivations

 Applications of multiresolution techniques : Compression, Progressive transmission and display, Level-of-detail Control, Multiresolution editing...

- A mesh simplification procedure for <u>general input</u> <u>meshes</u>
 - Preserve various properties (colors, normals, ...)
 - Lossless
 - Continuous-resolution
 - Efficient (time and space)
 - Directly applicable for Progressive transmission

Mesh simplification procedure

• Idea: apply sequence of edge collapses:

Connectivity change can be easily implemented using Half-Edge Data Structure

Simplification process

Inverse Direction: Reconstruction Vertex split transformation:

Reconstruction process

Continuous-resolution LOD

From PM, extract Mⁱ of any desired complexity.

Application: Smooth transitions

Correspondence is a surjection:

Video

Morphing by Linear Interpolation

- Source mesh M1={V1, ..., Vn}
- Target mesh M2={U1, ..., Un}
- The linear interpolation: M(t) = {V1*(1-t)+U1*t, ..., Vn*(1-t)+Un*t}

Application: Progressive transmission

Transmit records progressively:

Application: Selective refinement

Where to place the new vertex?

□ A simple strategy: pick shortest edge + use the midpoint

*An locally optimal solution:

- > To measure the shape error due to the edge collapse: QEM ["Surface Simplification Using Quadric Error Metrics," Garland and Heckbert 97]
 - > After an edge collapse, the error of a new vertex is the sum of squared distances to originally associated planes
 - Iteratively collapse the edge (u,v) with the lowest E(u,v) into the minimizer P(u,v), update the minimizers and QEMs of the new edges (suitable data structure: heap)

An analogous example in 2D:

A Quadratic Energy to Measure the Error

• Squared distance of point p to plane q:

$$p=(x,y,z,1)^T, \ q=(a,b,c,d)^T$$

$$dist(q,p)^2 = (q^Tp)^2 = p^T(qq^T)p =: p^TQ_qp$$

$$Q_q = \left[egin{array}{cccc} a^2 & ab & ac & ad\ ab & b^2 & bc & bd\ ac & bc & c^2 & cd\ ad & bd & cd & d^2 \end{array}
ight]$$

• • Sum distances to planes of neighboring triangles:

$$\sum_{i} dist(q_i, p)^2 = \sum_{i} p^T Q_{q_i} p = p^T \left(\sum_{i} Q_{q_i}\right) p =: p^T Q_p p$$

More Criteria to pick edges

- An energy to describe the deviation of *appearance* :
 - geometric shape
 - scalar fields (e.g. color)
 - Feature (discontinuity) curves

- In general, greedy strategy to always collapse edge resulting in smallest $\Delta\,E$

Summary

- With the half-edge data structure, can you implement this idea using the simplest strategy (pick shortest edge, use mid-point)
- Now consider the generalization of PM to 3D...

Edge Collapse

Is "Edge Collapse" the only way?

Is "Edge Collapse" the only way?

An application in Morphing

Course Project Candidate: Inter-surface mapping and morphing

